Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prion disease treatable if caught early

01.02.2007
Studies in mice have indicated that the effects of prion disease could be reversed if caught early enough.

The researchers said that their findings support developing early treatments that aim to reduce levels of prion protein in the brains of people with prion disease. Also, they said that their findings suggest testing the efficacy of treatments in a new way: by analyzing their cognitive effects in prion-infected mice.

The researchers, Giovanna Mallucci and colleagues, reported their findings in the February 1, 2007 issue of the journal Neuron, published by Cell Press.

Prion disease—such as the version of Creutzfeldt-Jakob disease believed to be contracted from cattle with "mad cow disease"—is caused by aberrant, infective proteins. It has been thought that the disease is untreatable.

... more about:
»brain cell »cognitive »deficits »findings

However, in previous studies with prion-infected mice, Mallucci and colleagues found that early brain degeneration can be reversed if prions are depleted in neurons.

In the new studies published in Neuron, they established that cognitive and behavioral impairments—which appear early in humans with prion disease—can be reversed if prion depletion is done early. What’s more, they found that the neurological pathology of the disease is reversed along with the cognitive and behavioral deficits.

In their studies, the researchers measured the effects of prion disease on the animals’ ability to discriminate novel objects in their cage and on normal burrowing behavior. In both cases, deficits in those abilities appeared early in the disease. Also, studies of the animals’ brain tissue revealed a parallel impairment of signaling among brain cells.

However, when the researchers manipulated the animals to deplete their brains of the prion protein, their memory ability and burrowing behavior recovered. Importantly, found the researchers, the signaling among brain cells also recovered.

"Overall, we conclude that the dramatic benefits to neuronal function and survival in prion-infected mice we have shown here support targeting neuronal [prion protein] directly as a therapeutic approach," wrote Mallucci and colleagues.

"Our findings of early reversible neurophysiological and cognitive deficits occurring prior to neuronal loss open new avenues in the prion field," they wrote. "To date, prion infection in mice has conventionally been diagnosed when motor deficits reflect advanced neurodegeneration. Now the identification of earlier dysfunction helps direct the study of mechanisms of neurotoxicity and therapies to earlier stages of disease, when rescue is still possible.

"Eventually it may also enable preclinical testing of therapeutic strategies through cognitive endpoints. These data now lead to the hope that early intervention in human prion disease will not only halt clinical progression but allow reversal of early behavioral and cognitive abnormalities," wrote the scientists.

Erin Doonan | EurekAlert!
Further information:
http://www.cell.com

Further reports about: brain cell cognitive deficits findings

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>