Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prion disease treatable if caught early

Studies in mice have indicated that the effects of prion disease could be reversed if caught early enough.

The researchers said that their findings support developing early treatments that aim to reduce levels of prion protein in the brains of people with prion disease. Also, they said that their findings suggest testing the efficacy of treatments in a new way: by analyzing their cognitive effects in prion-infected mice.

The researchers, Giovanna Mallucci and colleagues, reported their findings in the February 1, 2007 issue of the journal Neuron, published by Cell Press.

Prion disease—such as the version of Creutzfeldt-Jakob disease believed to be contracted from cattle with "mad cow disease"—is caused by aberrant, infective proteins. It has been thought that the disease is untreatable.

... more about:
»brain cell »cognitive »deficits »findings

However, in previous studies with prion-infected mice, Mallucci and colleagues found that early brain degeneration can be reversed if prions are depleted in neurons.

In the new studies published in Neuron, they established that cognitive and behavioral impairments—which appear early in humans with prion disease—can be reversed if prion depletion is done early. What’s more, they found that the neurological pathology of the disease is reversed along with the cognitive and behavioral deficits.

In their studies, the researchers measured the effects of prion disease on the animals’ ability to discriminate novel objects in their cage and on normal burrowing behavior. In both cases, deficits in those abilities appeared early in the disease. Also, studies of the animals’ brain tissue revealed a parallel impairment of signaling among brain cells.

However, when the researchers manipulated the animals to deplete their brains of the prion protein, their memory ability and burrowing behavior recovered. Importantly, found the researchers, the signaling among brain cells also recovered.

"Overall, we conclude that the dramatic benefits to neuronal function and survival in prion-infected mice we have shown here support targeting neuronal [prion protein] directly as a therapeutic approach," wrote Mallucci and colleagues.

"Our findings of early reversible neurophysiological and cognitive deficits occurring prior to neuronal loss open new avenues in the prion field," they wrote. "To date, prion infection in mice has conventionally been diagnosed when motor deficits reflect advanced neurodegeneration. Now the identification of earlier dysfunction helps direct the study of mechanisms of neurotoxicity and therapies to earlier stages of disease, when rescue is still possible.

"Eventually it may also enable preclinical testing of therapeutic strategies through cognitive endpoints. These data now lead to the hope that early intervention in human prion disease will not only halt clinical progression but allow reversal of early behavioral and cognitive abnormalities," wrote the scientists.

Erin Doonan | EurekAlert!
Further information:

Further reports about: brain cell cognitive deficits findings

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>