Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prion disease treatable if caught early

01.02.2007
Studies in mice have indicated that the effects of prion disease could be reversed if caught early enough.

The researchers said that their findings support developing early treatments that aim to reduce levels of prion protein in the brains of people with prion disease. Also, they said that their findings suggest testing the efficacy of treatments in a new way: by analyzing their cognitive effects in prion-infected mice.

The researchers, Giovanna Mallucci and colleagues, reported their findings in the February 1, 2007 issue of the journal Neuron, published by Cell Press.

Prion disease—such as the version of Creutzfeldt-Jakob disease believed to be contracted from cattle with "mad cow disease"—is caused by aberrant, infective proteins. It has been thought that the disease is untreatable.

... more about:
»brain cell »cognitive »deficits »findings

However, in previous studies with prion-infected mice, Mallucci and colleagues found that early brain degeneration can be reversed if prions are depleted in neurons.

In the new studies published in Neuron, they established that cognitive and behavioral impairments—which appear early in humans with prion disease—can be reversed if prion depletion is done early. What’s more, they found that the neurological pathology of the disease is reversed along with the cognitive and behavioral deficits.

In their studies, the researchers measured the effects of prion disease on the animals’ ability to discriminate novel objects in their cage and on normal burrowing behavior. In both cases, deficits in those abilities appeared early in the disease. Also, studies of the animals’ brain tissue revealed a parallel impairment of signaling among brain cells.

However, when the researchers manipulated the animals to deplete their brains of the prion protein, their memory ability and burrowing behavior recovered. Importantly, found the researchers, the signaling among brain cells also recovered.

"Overall, we conclude that the dramatic benefits to neuronal function and survival in prion-infected mice we have shown here support targeting neuronal [prion protein] directly as a therapeutic approach," wrote Mallucci and colleagues.

"Our findings of early reversible neurophysiological and cognitive deficits occurring prior to neuronal loss open new avenues in the prion field," they wrote. "To date, prion infection in mice has conventionally been diagnosed when motor deficits reflect advanced neurodegeneration. Now the identification of earlier dysfunction helps direct the study of mechanisms of neurotoxicity and therapies to earlier stages of disease, when rescue is still possible.

"Eventually it may also enable preclinical testing of therapeutic strategies through cognitive endpoints. These data now lead to the hope that early intervention in human prion disease will not only halt clinical progression but allow reversal of early behavioral and cognitive abnormalities," wrote the scientists.

Erin Doonan | EurekAlert!
Further information:
http://www.cell.com

Further reports about: brain cell cognitive deficits findings

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>