Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoy pill saves brain cells

01.02.2007
Successful treatment in mice may lead to neuroprotective drugs for stroke and Alzheimer's patients

Tricking a key enzyme can soothe over-excited receptors in the brain, say neuroscientists, calling this a possible strategy against stroke, Alzheimer's and other neurodegenerative diseases.

Lead author Michel Baudry of the University of Southern California, his graduate student Wei Xu and collaborators from the University of British Columbia outline their technique in the Feb. 1 issue of Neuron.

The researchers injected laboratory mice with a decoy peptide containing a snippet of a receptor that facilitates cell death in neurodegenerative diseases.

They hoped the toxic enzyme calpain would latch on to the decoy instead of the actual receptor, averting brain damage.

As a test, the researchers then injected the mice with kainic acid, a chemical known to cause seizures and neuron death.

While seizures still occurred, as in control mice, no brain lesions were observed in the subjects.

"We eliminate a big chunk of neuronal death," Baudry said. "I was surprised that this works. It looks like the peptide is almost completely neuroprotective."

Baudry, one of USC’s most frequently cited researchers, has been studying calpain and other chemicals in the brain for more than 20 years.

Scientists have known for decades that the neurotransmitter glutamate, which tells neurons to fire, can also destroy them. If over-activated, glutamate receptors start a chain reaction that raises the concentration of calcium and activates calpain, among other toxic enzymes.

But Baudry and Xu observed that in one receptor, mGluR1?, the situation is even worse. Under normal conditions, this receptor is neuroprotective. However, calpain truncates it and makes it neurodegenerative in such a way as to start a positive feedback loop that leads to ever-higher levels of calcium and continuous calpain activation.

In addition, by cutting mGluR1?, calpain eliminates its neuroprotective function.

The decoy, developed by Xu, reversed the outcomes. By tricking calpain, it prevented damage to the receptor and allowed the beneficial reaction to continue. In addition, it interrupted the feedback loop that stoked calpain activation.

"This is potentially a treatment for any conditions that involve this kind of excitotoxicity," Baudry said, and especially, he added, for the "window of opportunity" in the few hours after a stroke.

While a stroke kills some brain cells right away, others take much longer to die. If the stroke triggered a calcium-calpain feedback loop, treatment with decoy peptides might save some cells, Baudry said.

His group plans to test the treatment in a stroke model in mice.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Baudry Brain decoy neurodegenerative disease neuroprotective receptor

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>