Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to assess effects of multiple copies of genes on disease risk

01.02.2007
Scientists at Washington University School of Medicine in St. Louis and the biotech firm Nimblegen Systems Inc. have successfully tested a technique for identifying newly recognized DNA variations that may influence disease risk.

Rather than focus on errors and alterations in DNA sequence, the new technique highlights variations in the number of copies of a particular gene. Additional copies of a gene may lead to overproduction of that gene's protein, and this may affect both easily identifiable traits such as body size or more difficult-to-discern traits such as cancer risk.

Scientists report in Public Library of Science Genetics that they refined an analysis technique to assess variations in gene copy number in 20 different mouse strains. According to the paper's lead author, this budding area of study is likely to have wide-ranging implications for scientists' understanding of how DNA variations contribute to human health and illness.

"Right now, our results and other early assessments of human and other mammalian genomes are suggesting that about 10 percent of the genome features copy number variations," says Timothy Graubert, M.D., assistant professor of pathology and immunology and of medicine. "That's a huge number. As a percentage of the genome, variations in gene copy number could explain more person-to-person variability than the single-letter changes in the genetic code known as SNPs [single nucleotide polymorphisms]."

... more about:
»DNA »Genome »Graubert »assess

Graubert's lab uses human samples and mouse models to study leukemia, cancer that occurs in the bone marrow cells that make blood cells. Using Nimblegen's technique for assessing gene copy number, they identified approximately 80 variations in the number of gene copies in each of the mouse genomes. Graubert will incorporate the results into his lab's search for genetic factors that protect against or increase susceptibility to leukemia.

Much of the analytic work was led by graduate student Patrick Cahan and postdoctoral fellow Deepa Edwin, Ph.D. The 20 mouse strains were previously selected by the Mouse Phenome Project, which is assembling a database of how changes in mouse DNA affect mouse characteristics. The project is headquartered at Jackson Laboratory in Bar Harbor, Maine.

For their analysis, researchers compared the genome of each of the 20 mouse strains against that of the prototypical research mouse strain, C57BL/6J.

"That's the 'plain vanilla' mouse genome," Graubert explains. "Just like the reference human genome sequence that is used to identify genetic differences between human individuals, the C57BL/6J mouse genome is the one we understand best and the standard against which other mouse genomes can be compared."

Nimblegen's technique for rapid analysis is known as oligonucleotide array comparative genomic hybridization.

"The copy number variants we describe in this paper are numerous and fairly large—they vary in length between two thousand and two million DNA base pairs," Graubert says. "Datasets this large require a lot of analysis to be sure that what you're seeing is real, so we really worked hard to prove that these gene copy number variations are real and validated many of them using other technologies."

Graubert is working with Nimblegen to conduct a follow-up analysis of gene copy number variation in the mouse strains using an even more sensitive version of the technique. They are also testing how changes in gene copy number are reflected in RNA, the order slips for assembly of a gene's protein that are copied from DNA.

"The prediction is that if you have a higher gene copy number count, you'll see more RNA from that gene," he says. "But we need to test that on a genome-wide scale."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: DNA Genome Graubert assess

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>