Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to assess effects of multiple copies of genes on disease risk

01.02.2007
Scientists at Washington University School of Medicine in St. Louis and the biotech firm Nimblegen Systems Inc. have successfully tested a technique for identifying newly recognized DNA variations that may influence disease risk.

Rather than focus on errors and alterations in DNA sequence, the new technique highlights variations in the number of copies of a particular gene. Additional copies of a gene may lead to overproduction of that gene's protein, and this may affect both easily identifiable traits such as body size or more difficult-to-discern traits such as cancer risk.

Scientists report in Public Library of Science Genetics that they refined an analysis technique to assess variations in gene copy number in 20 different mouse strains. According to the paper's lead author, this budding area of study is likely to have wide-ranging implications for scientists' understanding of how DNA variations contribute to human health and illness.

"Right now, our results and other early assessments of human and other mammalian genomes are suggesting that about 10 percent of the genome features copy number variations," says Timothy Graubert, M.D., assistant professor of pathology and immunology and of medicine. "That's a huge number. As a percentage of the genome, variations in gene copy number could explain more person-to-person variability than the single-letter changes in the genetic code known as SNPs [single nucleotide polymorphisms]."

... more about:
»DNA »Genome »Graubert »assess

Graubert's lab uses human samples and mouse models to study leukemia, cancer that occurs in the bone marrow cells that make blood cells. Using Nimblegen's technique for assessing gene copy number, they identified approximately 80 variations in the number of gene copies in each of the mouse genomes. Graubert will incorporate the results into his lab's search for genetic factors that protect against or increase susceptibility to leukemia.

Much of the analytic work was led by graduate student Patrick Cahan and postdoctoral fellow Deepa Edwin, Ph.D. The 20 mouse strains were previously selected by the Mouse Phenome Project, which is assembling a database of how changes in mouse DNA affect mouse characteristics. The project is headquartered at Jackson Laboratory in Bar Harbor, Maine.

For their analysis, researchers compared the genome of each of the 20 mouse strains against that of the prototypical research mouse strain, C57BL/6J.

"That's the 'plain vanilla' mouse genome," Graubert explains. "Just like the reference human genome sequence that is used to identify genetic differences between human individuals, the C57BL/6J mouse genome is the one we understand best and the standard against which other mouse genomes can be compared."

Nimblegen's technique for rapid analysis is known as oligonucleotide array comparative genomic hybridization.

"The copy number variants we describe in this paper are numerous and fairly large—they vary in length between two thousand and two million DNA base pairs," Graubert says. "Datasets this large require a lot of analysis to be sure that what you're seeing is real, so we really worked hard to prove that these gene copy number variations are real and validated many of them using other technologies."

Graubert is working with Nimblegen to conduct a follow-up analysis of gene copy number variation in the mouse strains using an even more sensitive version of the technique. They are also testing how changes in gene copy number are reflected in RNA, the order slips for assembly of a gene's protein that are copied from DNA.

"The prediction is that if you have a higher gene copy number count, you'll see more RNA from that gene," he says. "But we need to test that on a genome-wide scale."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: DNA Genome Graubert assess

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>