Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to assess effects of multiple copies of genes on disease risk

01.02.2007
Scientists at Washington University School of Medicine in St. Louis and the biotech firm Nimblegen Systems Inc. have successfully tested a technique for identifying newly recognized DNA variations that may influence disease risk.

Rather than focus on errors and alterations in DNA sequence, the new technique highlights variations in the number of copies of a particular gene. Additional copies of a gene may lead to overproduction of that gene's protein, and this may affect both easily identifiable traits such as body size or more difficult-to-discern traits such as cancer risk.

Scientists report in Public Library of Science Genetics that they refined an analysis technique to assess variations in gene copy number in 20 different mouse strains. According to the paper's lead author, this budding area of study is likely to have wide-ranging implications for scientists' understanding of how DNA variations contribute to human health and illness.

"Right now, our results and other early assessments of human and other mammalian genomes are suggesting that about 10 percent of the genome features copy number variations," says Timothy Graubert, M.D., assistant professor of pathology and immunology and of medicine. "That's a huge number. As a percentage of the genome, variations in gene copy number could explain more person-to-person variability than the single-letter changes in the genetic code known as SNPs [single nucleotide polymorphisms]."

... more about:
»DNA »Genome »Graubert »assess

Graubert's lab uses human samples and mouse models to study leukemia, cancer that occurs in the bone marrow cells that make blood cells. Using Nimblegen's technique for assessing gene copy number, they identified approximately 80 variations in the number of gene copies in each of the mouse genomes. Graubert will incorporate the results into his lab's search for genetic factors that protect against or increase susceptibility to leukemia.

Much of the analytic work was led by graduate student Patrick Cahan and postdoctoral fellow Deepa Edwin, Ph.D. The 20 mouse strains were previously selected by the Mouse Phenome Project, which is assembling a database of how changes in mouse DNA affect mouse characteristics. The project is headquartered at Jackson Laboratory in Bar Harbor, Maine.

For their analysis, researchers compared the genome of each of the 20 mouse strains against that of the prototypical research mouse strain, C57BL/6J.

"That's the 'plain vanilla' mouse genome," Graubert explains. "Just like the reference human genome sequence that is used to identify genetic differences between human individuals, the C57BL/6J mouse genome is the one we understand best and the standard against which other mouse genomes can be compared."

Nimblegen's technique for rapid analysis is known as oligonucleotide array comparative genomic hybridization.

"The copy number variants we describe in this paper are numerous and fairly large—they vary in length between two thousand and two million DNA base pairs," Graubert says. "Datasets this large require a lot of analysis to be sure that what you're seeing is real, so we really worked hard to prove that these gene copy number variations are real and validated many of them using other technologies."

Graubert is working with Nimblegen to conduct a follow-up analysis of gene copy number variation in the mouse strains using an even more sensitive version of the technique. They are also testing how changes in gene copy number are reflected in RNA, the order slips for assembly of a gene's protein that are copied from DNA.

"The prediction is that if you have a higher gene copy number count, you'll see more RNA from that gene," he says. "But we need to test that on a genome-wide scale."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: DNA Genome Graubert assess

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>