Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT develops nanoparticles to battle cancer

01.02.2007
On a quest to modernize cancer treatment and diagnosis, an MIT professor and her colleagues have created new nanoparticles that mimic blood platelets. The team wants to use these new multifunctional particles to carry out different medical missions inside the body, from imaging to drug delivery.

After years of research, "we still treat cancer with surgery, radiation and chemotherapy," said Sangeeta Bhatia, an associate professor in MIT's Department of Electrical Engineering and Computer Science and the Harvard-MIT Division of Health Sciences and Technology. "People are now starting to think more in terms of 'Fantastic Voyage,' that sci-fi movie where they miniaturized a surgical team and injected it into someone."

The National Cancer Institute has recognized the value of Bhatia's work and has awarded her a grant to continue this line of research. Bhatia and collaborators Michael J. Sailor, chemist and materials scientist at the University of California at San Diego, and Erkki Ruoslahti, tumor biologist at the Burnham Institute for Medical Research, will receive $4.3 million in funding over five years.

The grant will allow the team to continue work on promising nanoparticle solutions that, while not quite miniature surgical teams, do have the potential to help identify tumors and deliver chemotherapy locally.

... more about:
»Bhatia »Tissue »blood vessel »nanoparticle

One solution already under way involves using nanoparticles for cancer imaging. By slipping through tiny gaps that exist in fast-growing tumor blood vessels and then sticking together, the particles create masses with enough of a magnetic signal to be detectable by a magnetic resonance imaging (MRI) machine. "This might allow for noninvasive imaging of fast-growing cancer 'hot spots' in tumors," said Bhatia. The team will continue this research by testing the imaging capabilities in animal models.

Another solution, described in the Jan. 16 issue of the Proceedings of the National Academy of Sciences, is a novel "homing" nanoparticle that mimics blood platelets. Platelets flow freely in the blood and act only when needed, by keying in on injured blood vessels and accumulating there to form clots. Similarly, these new nanoparticles key in on a unique feature of tumor blood vessels.

Ruoslahti had identified that the lining of tumor vessels contains a meshwork of clotted plasma proteins not found in other tissues. He also identified a peptide that binds to this meshwork. By attaching this peptide to nanoparticles, the team created a particle that targets tumors but not other tissues. When injected into the bloodstream of mice with tumors, the peptide sticks to the tumor's clotted mesh.

An unexpected feature of the nanoparticles is that they clump together and, in turn, induce more clumping. This helps to amplify the effects of the particles. "One downside of nanotechnology is that you shrink everything, including the cargo," said Bhatia. "You need particles to accumulate for them to be effective."

The assembly of these new particles concentrates them in a way that may improve on the tumor imaging capabilities the team described earlier. These particles also have the potential to be used as a means to cause clots big enough to choke off the blood supply to the tumor or to deliver drugs directly into the tumor.

But there are challenges ahead. For one, the team must verify that these particles only accumulate where they are desired. Also, they need better ways to keep the nanoparticles in the bloodstream. The body naturally clears these foreign bodies through the liver and spleen.

The team devised a means to temporarily disable this natural clearing system. They created a "decoy" particle that saturates this clearing system temporarily, allowing the active nanoparticles time to accumulate in the tumor tissue. These decoys, however, were toxic to some mice and also disable a system that normally protects the body, leaving it vulnerable to other invaders.

This challenge dovetails nicely with Bhatia's other work. Not only does she have expertise in liver functions, she directs the facility at the MIT Center for Cancer and Nanotechnology Excellence that analyzes new materials for toxicity and is working to standardize the guidelines for nanomaterial toxicity.

"We need to be able to understand the whole system better to be able to move the field forward," she said.

In addition to Sailor and Ruoslahti, Bhatia's co-authors on the recent PNAS paper are Dmitri Simberg, Tasmia Duza, Markus Essler, Jan Pilch, Lianglin Zhang and Austin M. Derfus, all from lead author Ruoslahti's laboratories at the University of California at Santa Barbara; Robert M. Hoffman, Ji Ho Park and Austin M. Derfus of the University of California at San Diego; and Meng Yang and Robert M. Hoffman of AntiCancer Inc.

The research was supported by grants from the National Cancer Institute and from the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Bhatia Tissue blood vessel nanoparticle

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>