Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT develops nanoparticles to battle cancer

01.02.2007
On a quest to modernize cancer treatment and diagnosis, an MIT professor and her colleagues have created new nanoparticles that mimic blood platelets. The team wants to use these new multifunctional particles to carry out different medical missions inside the body, from imaging to drug delivery.

After years of research, "we still treat cancer with surgery, radiation and chemotherapy," said Sangeeta Bhatia, an associate professor in MIT's Department of Electrical Engineering and Computer Science and the Harvard-MIT Division of Health Sciences and Technology. "People are now starting to think more in terms of 'Fantastic Voyage,' that sci-fi movie where they miniaturized a surgical team and injected it into someone."

The National Cancer Institute has recognized the value of Bhatia's work and has awarded her a grant to continue this line of research. Bhatia and collaborators Michael J. Sailor, chemist and materials scientist at the University of California at San Diego, and Erkki Ruoslahti, tumor biologist at the Burnham Institute for Medical Research, will receive $4.3 million in funding over five years.

The grant will allow the team to continue work on promising nanoparticle solutions that, while not quite miniature surgical teams, do have the potential to help identify tumors and deliver chemotherapy locally.

... more about:
»Bhatia »Tissue »blood vessel »nanoparticle

One solution already under way involves using nanoparticles for cancer imaging. By slipping through tiny gaps that exist in fast-growing tumor blood vessels and then sticking together, the particles create masses with enough of a magnetic signal to be detectable by a magnetic resonance imaging (MRI) machine. "This might allow for noninvasive imaging of fast-growing cancer 'hot spots' in tumors," said Bhatia. The team will continue this research by testing the imaging capabilities in animal models.

Another solution, described in the Jan. 16 issue of the Proceedings of the National Academy of Sciences, is a novel "homing" nanoparticle that mimics blood platelets. Platelets flow freely in the blood and act only when needed, by keying in on injured blood vessels and accumulating there to form clots. Similarly, these new nanoparticles key in on a unique feature of tumor blood vessels.

Ruoslahti had identified that the lining of tumor vessels contains a meshwork of clotted plasma proteins not found in other tissues. He also identified a peptide that binds to this meshwork. By attaching this peptide to nanoparticles, the team created a particle that targets tumors but not other tissues. When injected into the bloodstream of mice with tumors, the peptide sticks to the tumor's clotted mesh.

An unexpected feature of the nanoparticles is that they clump together and, in turn, induce more clumping. This helps to amplify the effects of the particles. "One downside of nanotechnology is that you shrink everything, including the cargo," said Bhatia. "You need particles to accumulate for them to be effective."

The assembly of these new particles concentrates them in a way that may improve on the tumor imaging capabilities the team described earlier. These particles also have the potential to be used as a means to cause clots big enough to choke off the blood supply to the tumor or to deliver drugs directly into the tumor.

But there are challenges ahead. For one, the team must verify that these particles only accumulate where they are desired. Also, they need better ways to keep the nanoparticles in the bloodstream. The body naturally clears these foreign bodies through the liver and spleen.

The team devised a means to temporarily disable this natural clearing system. They created a "decoy" particle that saturates this clearing system temporarily, allowing the active nanoparticles time to accumulate in the tumor tissue. These decoys, however, were toxic to some mice and also disable a system that normally protects the body, leaving it vulnerable to other invaders.

This challenge dovetails nicely with Bhatia's other work. Not only does she have expertise in liver functions, she directs the facility at the MIT Center for Cancer and Nanotechnology Excellence that analyzes new materials for toxicity and is working to standardize the guidelines for nanomaterial toxicity.

"We need to be able to understand the whole system better to be able to move the field forward," she said.

In addition to Sailor and Ruoslahti, Bhatia's co-authors on the recent PNAS paper are Dmitri Simberg, Tasmia Duza, Markus Essler, Jan Pilch, Lianglin Zhang and Austin M. Derfus, all from lead author Ruoslahti's laboratories at the University of California at Santa Barbara; Robert M. Hoffman, Ji Ho Park and Austin M. Derfus of the University of California at San Diego; and Meng Yang and Robert M. Hoffman of AntiCancer Inc.

The research was supported by grants from the National Cancer Institute and from the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Bhatia Tissue blood vessel nanoparticle

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>