Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster University researchers discover zip codes for protein

31.01.2007
McMaster scientists are very close to defining small molecule drugs that should be able to redirect the huntingtin protein from accumulating in the wrong place within brain cells, which could potentially translate to a therapy for Huntington's Disease (HD).

There is currently no way to stop or reverse the progression of Huntington’s Disease, which affects one in 10,000 Americans. It is a progressive, and eventually fatal, genetic neurological disease.

Associate professor Ray Truant’s lab has discovered molecular ‘zip codes’ or protein sequences in the huntingtin protein that dictate where it goes to within a brain cell.

"We have shown that the mutant huntingtin protein is mis-localized in brain cells in Huntington’s Disease, because it is being improperly signaled, or instructed where to go in the cell," said Truant, of the Department of Biochemistry and Biomedical Sciences.

... more about:
»Huntingtin »Protein »brain cell

"In particular, Huntingtin is accumulating at the heart of the cell, the nucleus, where it shouldn't be. This is causing the brain cells to not function properly, and eventually die."

Truant and his university colleagues have received a $260,000 research operating grant from the American-based High Q Foundation. The grant will fund research using the technology of McMaster’s new Biophotonics Facility and the use of laser microscopy in living brain cells.

It will also use the McMaster High Throughput Screening Facility to screen for new drugs that can affect how huntingtin is signalled.

"This class of small molecule drugs we are now working with has been proven recently to be a very successful class of drugs for different diseases, but not yet in HD," said Truant.

This new type of research is called Chemical Biology and is the focus of a new graduate degree program at McMaster University. The federal Canada Foundation for Innovation recently announced a $8 million grant towards a new Centre of Microbial Chemical Biology at McMaster.

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Huntingtin Protein brain cell

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>