Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster University researchers discover zip codes for protein

31.01.2007
McMaster scientists are very close to defining small molecule drugs that should be able to redirect the huntingtin protein from accumulating in the wrong place within brain cells, which could potentially translate to a therapy for Huntington's Disease (HD).

There is currently no way to stop or reverse the progression of Huntington’s Disease, which affects one in 10,000 Americans. It is a progressive, and eventually fatal, genetic neurological disease.

Associate professor Ray Truant’s lab has discovered molecular ‘zip codes’ or protein sequences in the huntingtin protein that dictate where it goes to within a brain cell.

"We have shown that the mutant huntingtin protein is mis-localized in brain cells in Huntington’s Disease, because it is being improperly signaled, or instructed where to go in the cell," said Truant, of the Department of Biochemistry and Biomedical Sciences.

... more about:
»Huntingtin »Protein »brain cell

"In particular, Huntingtin is accumulating at the heart of the cell, the nucleus, where it shouldn't be. This is causing the brain cells to not function properly, and eventually die."

Truant and his university colleagues have received a $260,000 research operating grant from the American-based High Q Foundation. The grant will fund research using the technology of McMaster’s new Biophotonics Facility and the use of laser microscopy in living brain cells.

It will also use the McMaster High Throughput Screening Facility to screen for new drugs that can affect how huntingtin is signalled.

"This class of small molecule drugs we are now working with has been proven recently to be a very successful class of drugs for different diseases, but not yet in HD," said Truant.

This new type of research is called Chemical Biology and is the focus of a new graduate degree program at McMaster University. The federal Canada Foundation for Innovation recently announced a $8 million grant towards a new Centre of Microbial Chemical Biology at McMaster.

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Huntingtin Protein brain cell

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>