Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella survives better in stomach due to altered DNA

31.01.2007
Since 1995 there has been a considerable increase in the number of infections with a specific type of Salmonella bacteria transmitted via food.

This type, Salmonella serovar Typhimurium DT104, is resistant to at least five different antibiotics. Dutch researcher Armand Hermans found new genetic information in DNA of DT104 that might be involved in its survival and infection mechanism. This genetic information might also be involved in the increase in the number of infections caused by this pathogen.

By comparing the DNA of Salmonella serovar Typhimurium DT104 with the known DNA code of another Salmonella strain, Hermans found new DNA fragments in DT104. These pieces of DNA were found to contain genetic information that might play a role in the survival and infectiousness of this pathogen. The presence of such extra genetic characteristics can make the pathogen stronger and more infectious.

To examine how DT104 behaves to survive various "extreme" conditions, the switching on and off of 500 genetic characteristics was studied. This happened under different conditions such as in a hot, acid or oxygen-free environment. Almost all of the survival characteristics were found to be active under all conditions, whereas the pathogenic characteristics were only active under a few of the conditions. Therefore this pathogen always does everything it can to survive under all conditions, for example, during food conservation or in gastric acid. The pathogenic characteristics of DT104 on the other hand are only active in the intestines where the infection takes place.

... more about:
»DNA »DT104 »Salmonelle »characteristics »conditions

Evolution of the pathogen

The DNA of the pathogen says something about how it survives and is transmitted. When a pathogen reproduces, the DNA can change a bit and this can lead to changes in the genetic characteristics. This can, for example, lead to antibiotic resistance but also heat or acid resistance. The pathogens with the best genetic characteristics can spread and survive better and are therefore more infectious: the evolution of a pathogen. Examining which genetic characteristics are present in an infectious Salmonella (in this case the DT104 type) can reveal how this pathogen has become stronger and caused more outbreaks. This information can also be used to make a less dangerous variant of this infectious Salmonella. Such a harmless variant can be used as a vaccine.

Salmonella serovar Typhimurium DT104 is an antibiotic-resistant pathogen that is transmitted via food and is considered to be dangerous for humans. In recent decades the number of infections with this variant has increased in many parts of the world. This research was funded by NWO and contributes to knowledge about the characteristics and behaviour of this dangerous Salmonella.

Dr Armand Hermans | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6X9EWV_Eng

Further reports about: DNA DT104 Salmonelle characteristics conditions

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>