Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes behind animal growth discovered

30.01.2007
An advance in genomics, the ID of growth genes in oysters has relevance for farming and aquaculture

How many genes influence a complex trait, like weight, height or body type?

And why does the answer matter?

Among other reasons, because the "Green Revolution" that multiplied crop yields has to be followed by a "Blue Revolution" in ocean farming, according to marine biologists at the University of Southern California.

... more about:
»Animal »Manahan »genes »vigor

"We’re going to have to make future decisions as a society how to provide enough food for a growing population," said Donal Manahan, co-author of a study on oyster growth appearing online this week in Proceedings of the National Academy of Sciences Early Edition.

Currently a delicacy, oysters fed the masses in the past and could again become "the soy bean of the sea" as traditional fisheries collapse, Manahan predicted.

He and senior author Dennis Hedgecock linked growth rate in oysters to approximately 350 genes, or 1.5 percent of the more than 20,000 genes in the oyster genome.

To the authors’ knowledge, this is the first estimate of the number of genes that determine growth rate in any animal.

Specifically, the authors discovered the genes responsible for "hybrid vigor," or the ability of some children of crossbreeding to outgrow both parents. Hybrid vigor is of evolutionary as well as agricultural interest because it appears to favor biodiversity.

Many plants have hybrid vigor. Seed companies exploited this property to increase corn yields seven-fold from the 1920s to the present.

Most animals do not express hybrid vigor to such an extent, the authors said. That makes oysters particularly strong candidates for aquaculture.

"Their hybrids grow much faster than either of the parents. And this is exactly like corn," Manahan said.

The PNAS study may lead to improved breeding both on land and sea. The green revolution worked by trial and error, with companies trying every possible cross of corn strains to find the best hybrids.

"A century after its discovery in corn, we still don’t know why plants have hybrid vigor, despite the economic and evolutionary importance of this phenomenon," Hedgecock explained.

Knowing the genes for hybrid vigor may enable companies to develop the best cross of corn strains, or oyster types, without guesswork.

The lines would not be genetically modified, only screened and matched as in a dating service.

The goal is efficient and sustainable domestication of oysters and other promising ocean species, mostly shellfish. Oysters already are the number one farmed aquatic species worldwide.

Aquaculture of large fish remains environmentally challenging, Manahan and Hedgecock noted.

Another problem is the apparent lack of hybrid vigor in most fish. Even in oysters, the researchers found the rules of hybrid vigor to be more complicated than predicted by classical ideas in genetics and physiology.

For example, some genes were expressed much less in the offspring than in either parent, a pattern the authors call "underdominance." Very few genes were expressed as the average of the expression in their parents.

Hedgecock called the underdominance patterns "one of the more surprising findings" of the study.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Animal Manahan genes vigor

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>