Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating human metabolism to find new diets to new drugs

30.01.2007
Computerized model will give researchers a new way to hunt for better treatments for hundreds of human metabolic disorders

Bioengineering researchers at UC San Diego have painstakingly assembled a virtual human metabolic network that will give researchers a new way to hunt for better treatments for hundreds of human metabolic disorders, from diabetes to high levels of cholesterol in the blood. This first-of-its-kind metabolic network builds on the sequencing of the human genome and contains more than 3,300 known human biochemical transformations that have been documented during 50 years of research worldwide.

In a report in the Proceedings of the National Academy of Sciences (PNAS) made available on the journal's website on Jan. 29, the UCSD researchers led by Bernhard Ø Palsson, a professor of bioengineering in the Jacobs School of Engineering, unveiled the BiGG (biochemically, genetically, and genomically structured) database as the end product of this phase of the research project.

Each person's metabolism, which represents the conversion of food sources into energy and the assembly of molecules, is determined by genetics, environment, and nutrition. In a demonstration of the power and flexibility of the BiGG database, the UCSD researchers conducted 288 simulations, including the synthesis of testosterone and estrogen, as well as the metabolism of dietary fat. In every case, the behavior of the model matched the published performance of human cells in defined conditions.

... more about:
»cholesterol »metabolic »metabolism »scientists

Researchers can use the computationally based database to quickly discover the effects on a given cell type of changing the performance of any of the 3,300 known human metabolic reactions operating in that cell. The tool is designed to help scientists explore hundreds of human disorders in the metabolism of amino acids, carbohydrates, lipids, minerals, and other molecules. It also is intended to be used in the future to study metabolic variations between people as a way to individually tailor diet for weight control.

Studying the metabolism of cholesterol is another potential application. Cholesterol is a lipid that is incorporated into all cell membranes. An estimated 105 million adults in the United States have total blood cholesterol values of 200 milligrams per deciliter (mg/dl) and higher, and of these about 36.6 million have levels of 240 mg/dl or more, according to the American Heart Association. Such high cholesterol levels are associated with an elevated risk of heart disease.

More than two dozen biochemical reactions in human cells are needed to make cholesterol. Cholesterol-lowering drugs called statins affect just one of those reactions, reducing the synthesis of cholesterol as if they were pinching a garden hose, slowing the flow of cholesterol through it. However, metabolic pathways are actually labyrinths of interconnected garden hoses with complicated flow patterns.

"Pinching off one part of the labyrinth can have a good effect, but it can also have unexpected consequences, or even no effect because of redundancy built into metabolic systems," Palsson said. "The new tool we've created allows scientists to tinker with a virtual metabolic system in ways that were, until now, impossible, and to test the modeling predictions in real cells."

Each type of cell in the human body utilizes only a fraction of all 3,300 metabolic reactions, and scientists can create in silico any type of cell, from a heart cell to a red blood cell, with its particular complement of metabolic enzymes, and adjust their genetic or other properties to compute the cell's behavior.

"We can analyze abnormal metabolism at the root cause of diseases such as hemolytic anemia, which can result from a deficiency in metabolic reactions," said Neema Jamshidi, an MD/Ph. D. student at UCSD and co-author of the paper. "We can study both the causes and consequences of this and other diseases, which may lead to novel insights about how new drugs might be designed to treat them."

After tabulating all reliable metabolic information about human cells, the team employed mathematical tools traditionally used in signal processing and operations research to identify a cell's most influential metabolic components in key metabolic states. "This approach confirmed in a mathematically rigorous way what cell biologists already understand to be true: cells use compartmentalization to coordinate their metabolism," Jamshidi said. "Our technique provides scientists with a new way to investigate the role of compartmentalization in metabolism."

The reconstructed metabolic network is based on the human genome sequence. Palsson's team of six researchers manually analyzed 1,500 key books, review papers, and legacy scientific reports published over the past 50 years. The team used strict quality control criteria accepted by the scientific community to assemble the network piece by metabolic piece during more than a year of intense work.

"This accomplishment was made possible by the Human Genome Project, and its scope and utility will grow over time," Palsson said. Some parts of human metabolism require additional research, and that information, when obtained, will be added to the model as part of the project's next phase.

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: cholesterol metabolic metabolism scientists

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>