Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating human metabolism to find new diets to new drugs

30.01.2007
Computerized model will give researchers a new way to hunt for better treatments for hundreds of human metabolic disorders

Bioengineering researchers at UC San Diego have painstakingly assembled a virtual human metabolic network that will give researchers a new way to hunt for better treatments for hundreds of human metabolic disorders, from diabetes to high levels of cholesterol in the blood. This first-of-its-kind metabolic network builds on the sequencing of the human genome and contains more than 3,300 known human biochemical transformations that have been documented during 50 years of research worldwide.

In a report in the Proceedings of the National Academy of Sciences (PNAS) made available on the journal's website on Jan. 29, the UCSD researchers led by Bernhard Ø Palsson, a professor of bioengineering in the Jacobs School of Engineering, unveiled the BiGG (biochemically, genetically, and genomically structured) database as the end product of this phase of the research project.

Each person's metabolism, which represents the conversion of food sources into energy and the assembly of molecules, is determined by genetics, environment, and nutrition. In a demonstration of the power and flexibility of the BiGG database, the UCSD researchers conducted 288 simulations, including the synthesis of testosterone and estrogen, as well as the metabolism of dietary fat. In every case, the behavior of the model matched the published performance of human cells in defined conditions.

... more about:
»cholesterol »metabolic »metabolism »scientists

Researchers can use the computationally based database to quickly discover the effects on a given cell type of changing the performance of any of the 3,300 known human metabolic reactions operating in that cell. The tool is designed to help scientists explore hundreds of human disorders in the metabolism of amino acids, carbohydrates, lipids, minerals, and other molecules. It also is intended to be used in the future to study metabolic variations between people as a way to individually tailor diet for weight control.

Studying the metabolism of cholesterol is another potential application. Cholesterol is a lipid that is incorporated into all cell membranes. An estimated 105 million adults in the United States have total blood cholesterol values of 200 milligrams per deciliter (mg/dl) and higher, and of these about 36.6 million have levels of 240 mg/dl or more, according to the American Heart Association. Such high cholesterol levels are associated with an elevated risk of heart disease.

More than two dozen biochemical reactions in human cells are needed to make cholesterol. Cholesterol-lowering drugs called statins affect just one of those reactions, reducing the synthesis of cholesterol as if they were pinching a garden hose, slowing the flow of cholesterol through it. However, metabolic pathways are actually labyrinths of interconnected garden hoses with complicated flow patterns.

"Pinching off one part of the labyrinth can have a good effect, but it can also have unexpected consequences, or even no effect because of redundancy built into metabolic systems," Palsson said. "The new tool we've created allows scientists to tinker with a virtual metabolic system in ways that were, until now, impossible, and to test the modeling predictions in real cells."

Each type of cell in the human body utilizes only a fraction of all 3,300 metabolic reactions, and scientists can create in silico any type of cell, from a heart cell to a red blood cell, with its particular complement of metabolic enzymes, and adjust their genetic or other properties to compute the cell's behavior.

"We can analyze abnormal metabolism at the root cause of diseases such as hemolytic anemia, which can result from a deficiency in metabolic reactions," said Neema Jamshidi, an MD/Ph. D. student at UCSD and co-author of the paper. "We can study both the causes and consequences of this and other diseases, which may lead to novel insights about how new drugs might be designed to treat them."

After tabulating all reliable metabolic information about human cells, the team employed mathematical tools traditionally used in signal processing and operations research to identify a cell's most influential metabolic components in key metabolic states. "This approach confirmed in a mathematically rigorous way what cell biologists already understand to be true: cells use compartmentalization to coordinate their metabolism," Jamshidi said. "Our technique provides scientists with a new way to investigate the role of compartmentalization in metabolism."

The reconstructed metabolic network is based on the human genome sequence. Palsson's team of six researchers manually analyzed 1,500 key books, review papers, and legacy scientific reports published over the past 50 years. The team used strict quality control criteria accepted by the scientific community to assemble the network piece by metabolic piece during more than a year of intense work.

"This accomplishment was made possible by the Human Genome Project, and its scope and utility will grow over time," Palsson said. Some parts of human metabolism require additional research, and that information, when obtained, will be added to the model as part of the project's next phase.

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: cholesterol metabolic metabolism scientists

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>