Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important mechanism identified in the formation of blood vessels

30.01.2007
All tissues, sick and healthy alike, need a blood supply to survive and grow.

The key to many medical problems, like preventing tumour development, is therefore to obstruct the spread of the blood vessels. Research scientists at Karolinska Institutet have now discovered a heretofore unknown mechanism for how the body links together its blood vessels.

New blood vessels are formed when a “shoot” sprouts from an already existing vessel. These shoots lengthen, branch off and contact other vessels as they form communicating networks of channels. The process is called “angiogenesis” and is important in foetal development and normal tissue formation in connection with the healing of wounds, the menstrual cycle and so on. However, it also plays a critical part in morbid tissue formation, such as cancer and chronic inflammatory diseases.

The inhibition of morbid angiogenesis therefore has very attractive therapeutic potential for a variety of diseases. Tumours, for instance, can grow no larger than 1 or 2 mm without new blood vessels, upon which they are dependent for their proliferation. To date, anti-angiogenic therapy has proved effective in the treatment of colon cancer and the common eye disease AMD (Age-dependent Macula Degeneration).

... more about:
»VEGF »anti-angiogenic »blood »blood vessel »formation

All therapies have so far targeted the growth factor VEGF (Vascular Endothelial Growth Factor). VEGF controls several important functions during the formation of blood vessels by signalling via receptors on the surface of the endothelial cells, the specialised layer of cells on the interior surface of the blood vessels.

Swedish scientists at Karolinska Institutet and the biotech company AngioGenetics AB have now shown that another factor called Dll4 (Delta-like 4) has a similarly fundamental role in blood vessel formation as VEGF. The results are published in Nature no. 28 (January 2007) and can mean that Dll4 is just as important a target for anti-angiogenic drugs as VEGF.

“We can now develop ways of boosting the effect of existing anti-angiogenic therapies, and maybe we can even start to treat tumour types that do not currently respond to anti-angiogenic drugs,” says Mats Hellström, one of the scientists involved in the study.

The researchers have found that Dll4 signalling determines how many sprouts bud off from the parent vessel. This principle is critical to the number of branches and links that form and to attaining the correct density of vessels. Too great a blood supply to a tissue is just as devastating as too little.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: VEGF anti-angiogenic blood blood vessel formation

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>