Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide plays a vital role in the formation of long-term memory in snails

18.02.2002


Snails can teach us a great deal about how we form memories, according to a group of neuroscientists at the University of Sussex.

Research by Dr Ildikó Kemenes, Professor Paul Benjamin, Professor Michael O’Shea and colleagues shows that nitric oxide plays a vital role in the formation of long-term memory in snails. This is of crucial importance because the gas has already been shown to play such a role in humans and other mammals.

Ideally, scientists would like to use mammals to study the mechanism of memory formation, but mammalian brains are too complex. So, instead, they have to study animals with simpler brains. Snails are an ideal choice because they have unusually large neurons (nerve cells). But, until now no one had conclusively shown that nitric oxide plays a role in the formation of long-term memory in snails.



So, the Sussex team carried out experiments to see whether interfering with nitric oxide, in ways known to prevent mammals forming long-term memory, would have a similar effect on snails.

The experiments made use of a smell-taste association. Snails can be taught to associate the smell of amyl acetate, a chemical that smells like pear drops, with a tasty sugar solution. Subsequently, whenever they smell ‘pear drops’, they begin to make mouth movements in anticipation of food.

The Sussex team injected snails with chemicals that either blocked the production of nitric oxide, or prevented it passing to other neurones, or blocked its action. They found that in each case the snails failed to memorise the association if the injection had been made within five hours after training - the time in which long-term memory is laid down.

This is the best evidence so far that nitric oxide plays a role in the formation of long-term memory in snails. Moreover, this is the first time that anyone has demonstrated such a role in any animal at both the neuronal and the behavioural level.

The findings are published in the current Journal of Neuroscience, issued on February 15.

Alison Field | alphagalileo
Further information:
http://www.sussex.ac.uk

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>