Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide plays a vital role in the formation of long-term memory in snails

18.02.2002


Snails can teach us a great deal about how we form memories, according to a group of neuroscientists at the University of Sussex.

Research by Dr Ildikó Kemenes, Professor Paul Benjamin, Professor Michael O’Shea and colleagues shows that nitric oxide plays a vital role in the formation of long-term memory in snails. This is of crucial importance because the gas has already been shown to play such a role in humans and other mammals.

Ideally, scientists would like to use mammals to study the mechanism of memory formation, but mammalian brains are too complex. So, instead, they have to study animals with simpler brains. Snails are an ideal choice because they have unusually large neurons (nerve cells). But, until now no one had conclusively shown that nitric oxide plays a role in the formation of long-term memory in snails.



So, the Sussex team carried out experiments to see whether interfering with nitric oxide, in ways known to prevent mammals forming long-term memory, would have a similar effect on snails.

The experiments made use of a smell-taste association. Snails can be taught to associate the smell of amyl acetate, a chemical that smells like pear drops, with a tasty sugar solution. Subsequently, whenever they smell ‘pear drops’, they begin to make mouth movements in anticipation of food.

The Sussex team injected snails with chemicals that either blocked the production of nitric oxide, or prevented it passing to other neurones, or blocked its action. They found that in each case the snails failed to memorise the association if the injection had been made within five hours after training - the time in which long-term memory is laid down.

This is the best evidence so far that nitric oxide plays a role in the formation of long-term memory in snails. Moreover, this is the first time that anyone has demonstrated such a role in any animal at both the neuronal and the behavioural level.

The findings are published in the current Journal of Neuroscience, issued on February 15.

Alison Field | alphagalileo
Further information:
http://www.sussex.ac.uk

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>