Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA gets new twist: Carnegie Mellon scientists develop unique 'DNA nanotags'

29.01.2007
Ultra-bright fluorescent labels are important for biomedical applications

Carnegie Mellon University scientists have married bright fluorescent dye molecules with DNA nanostructure templates to make nanosized fluorescent labels that hold considerable promise for studying fundamental chemical and biochemical reactions in single molecules or cells. The work, published online Jan. 26 in "The Journal of the American Chemical Society,” improves the sensitivity for fluorescence-based imaging and medical diagnostics.

"Our DNA nanotags offer unprecedented densities of fluorescent dyes and, thus, the potential for extremely bright fluorescent labels,” said graduate student Andrea Benvin, who developed the nanotags in the laboratory of Bruce Armitage, associate professor of chemistry in the Mellon College of Science (MCS) at Carnegie Mellon. "We’ve put it all into a very small package, which will allow us to detect molecules with great sensitivity without interfering with the biological processes we are trying to understand."

The high brightness of the nanotags should be of great help in detecting rare cancer cells within tissue biopsies, for example, which is important in determining whether treatments have been successful or if recurrence is likely, according to Armitage. In addition, DNA nanotags offer the opportunity to perform multicolor experiments. This feature is extremely useful for imaging applications, Armitage says, because the multiple colors can be seen simultaneously, requiring only one experiment using one laser and one fluorescence-imaging machine.

"For example, two different populations of cells, one healthy and the other cancerous, could be distinguished based on labeling them with different color fluorescent nanotags," Armitage said.

Benvin, Armitage and colleagues at Carnegie Mellon’s Molecular Biosensor and Imaging Center modeled their DNA nanotags on the structure of phycobiliproteins. Found in certain types of algae, such as the red and blue algae in fresh and marine waters, these proteins contain multiple, fluorescent pigments that work together to absorb light energy that is then transferred to chlorophyll, where it is used for photosynthesis. The Carnegie Mellon team has mimicked this efficient light-harvesting process in the design of their DNA nanotags to create incredibly bright, fluorescent labels.

"The primary advantages of our system are the simplicity of its design combined with the ease with which the fluorescence brightness and color can be tuned," Armitage said.

To achieve greater brightness, the Carnegie Mellon team assembled well-defined nanostructured DNA templates that bind multiple fluorescent dye molecules between base pairs in the DNA helix (see image). This arrangement keeps dyes far enough away from each other to avoid canceling out each other’s fluorescence. The DNA templates can also be modified to bind to other molecules or to the surface of a cell of interest. The innovative design creates nanotags with large light-harvesting capabilities and very high light-emission (fluorescence) intensities. Because the DNA can accommodate one dye for every two base pairs, a DNA nanostructure with 30 base pairs can bind up to 15 fluorescent dye molecules. The resulting dye-DNA complexes are approximately 15 times brighter than an individual dye molecule. And they can be made even brighter by simply increasing the number of base pairs in the DNA nanostructure.

Multicolor experiments are possible because the DNA nanotags contain "light-harvesting" dyes within the DNA helix that are excited by one wavelength of light and then transfer that excitation energy to "light-emitting" dyes on the nanotag’s surface. The light-emitting dyes can fluoresce at a different color from the light-harvesting dye. For example, one type of DNA nanotag can act as an antenna that efficiently harvests blue light and transfers that light energy to another dye within the nanostructure. The second dye then emits orange, red or even infrared light. Changing the light-harvesting dyes allows even more variation in the fluorescence color, Armitage said.

The nanotags are easily assembled by mixing commercially available DNA strands and fluorescent dyes. And while the work described by the Carnegie Mellon team relied on a relatively simple two-dimensional DNA nanostructure, Armitage notes that the rapidly growing field of DNA nanotechnology is generating increasingly intricate three-dimensional nanostructures that should lead to further improvements in brightness.

"We really feel that this is the tip of the iceberg and that nanotags 100 times brighter than existing labels can be developed in any color," he said.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu

Further reports about: Armitage DNA fluorescence fluorescent light-harvesting nanotag

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>