Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create New Method for Uncovering Natural Products from Mystery 'Orphan Genes'

29.01.2007
Approach leads to identification of compound with potential benefits in agriculture through crop protection

Microorganisms have a proven track record for producing powerful molecules useful in antibiotics, as anticancer agents and in treating human diseases.At times, researchers studying the genomes of these microorganisms have come across sections of DNA for which scientists cannot determine what is ultimately produced. It's not clear what might be created from these so-called "orphan gene clusters" and if those end products might carry beneficial qualities.

Scientists at Scripps Institution of Oceanography at UC San Diego have devised a new method for identifying the mysterious products of orphan gene clusters.

"In this new age of genomics, microorganisms have even more capacity to make exotic natural product molecules than we ever realized," said William Gerwick, a professor in Scripps Oceanography's Center for Marine Biotechnology and Biomedicine and the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego. "However, sometimes we don't know how to find these products. We can see them in the genomic information but we can't necessarily find the resulting organic substances."

The method developed by Gerwick and his colleagues employs a novel combination of genomic sequence analysis and isotope labeling. The new "genomisotopic approach" is described in the new issue of Chemistry & Biology as the journal's featured cover paper.

Gerwick says the key to the genomisotopic approach lies in the combined power of bioinformatics—computer programming to predict the proteins as well as the component building blocks they will use to make the new mystery product—with the ability to provide building blocks containing distinctive isotope labels to cultures producing the mystery compound. The microorganism assimilates the isotope-tagged precursors, incorporates them into the mystery compound, thus enabling the researchers to "find" the mystery compound simply by looking for the isotope signature. According to the paper, the approach represents a valuable complement to existing genome "mining" strategies.

"This technique allows us to methodically and with a very well-defined strategy figure out and isolate the compounds that are produced from those orphan gene clusters," said Gerwick. "With the genomisotopic approach we're mapping out a metabolic process. We're watching the incorporation of the amino acid into a more complex natural products structure and visualizing it at the end by a combination of mass spectrometry and nuclear magnetic resonance spectroscopy."

The genomisotopic approach was born out of a failed experiment in Gerwick's laboratory. A student had attempted to clone the biosynthetic gene cluster for a certain compound. The student sequenced a stretch of DNA that initially appeared promising as the correct gene cluster, but ultimately proved not to be.

"So with that big stretch of DNA we scratched our heads and wondered, if it didn't make the compound we thought it did, what did it make?" said Gerwick. "We brainstormed and thought we could come up with an approach for finding out."

In addition to describing the genomisotopic approach, the Chemistry & Biology paper describes the identification of a compound of a previously unknown natural product discovered through the new method. Gerwick and his colleagues applied the approach and found what is now known as orfamide A, a new natural product that may prove beneficial in agriculture and crop protection due to its potential in suppressing plant diseases.

Gerwick says the new approach will now be applied to various organisms derived from the ocean, including marine bacteria.

In addition to Gerwick, the paper's coauthors include Harald Gross (Scripps and Oregon State University), Virginia Stockwell (Oregon State University), Marcella Henkels (U.S. Department of Agriculture), Brian Nowak-Thompson (Northland College) and Joyce Loper (U.S. Department of Agriculture).

The study was funded by the National Institutes of Health and the Microbial Genomic Sequencing Program of the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: approach compound genomisotopic microorganism

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>