Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel EGFR antibody outperforms cetuximab in mouse model of lung cancer

29.01.2007
Potential solution to cetuximab-resistance in lung cancers

Antibodies that selectively bind and destroy cancer cells represent some of the most promising cancer therapy approaches being developed today. Several of these antibodies have reached the market, including cetuximab (Erbitux®, ImClone Systems), which targets the epidermal growth factor receptor (EGFR) protein. However, a study conducted at the Dana-Farber Cancer Institute and the Ludwig Center at Dana-Farber/Harvard Medical School now suggests that antibodies binding a particular protein conformation, caused by hyperactivation, might have distinct therapeutic advantages over antibodies, like cetuximab, that bind to wild-type (normal) target proteins.

The study, led by Dana-Farber Cancer Institute's Dr. Kwok-Kin Wong, and published today in the Journal of Clinical Investigation, is part of a multi-center, international effort to assess the clinical potential of the 806 antibody. The 806 antibody was discovered by scientists at the Ludwig Institute for Cancer Research. The antibody targets EGFR only when the receptor has been activated by mutations, by the protein's over-expression or by amplification of the EGFR gene. In the present study, Dr. Wong compared the action of cetuximab and 806 in a mouse model of non-small cell lung cancer (NSCLC) caused by different activating mutations in EGFR.. The 806 antibody caused a dramatic tumor regression in the mice, while cetuximab did not.

"Cetuximab only works on a subset of patients with lung cancers," says Wong. "We think the 806 antibody might benefit those patients who respond to cetuximab but, more importantly, might also be effective for those patients who don't." According to Dr. Wong, approximately 10-30 percent of patients with NSCLC and 5 percent of patients with squamous cell lung cancers have EGFR activating mutations. Some brain tumors also have EGFR activating mutations that are – in animal studies – responsive to the 806 antibody. A phase I clinical trial of the 806 antibody has been completed in Melbourne, Australia by the Ludwig Institute for Cancer Research co-authors. The antibody was shown to target a variety of cancers, including squamous cell lung cancer, with no targeting of normal tissues and no toxicity.

Sarah L. White | EurekAlert!
Further information:
http://www.licr.org

Further reports about: Cetuximab EGFR Wong lung cancer

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>