Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin-led study uncovers role of appetite hormone MCH in insulin production

29.01.2007
Findings may lead to treatments that stimulate insulin production

A new Joslin Diabetes Center-led study has shown conclusively that a neuropeptide, melanin concentrating hormone (MCH), found in the brain and known for its role in increasing appetite in people, plays a role in the growth of insulin-producing beta cells and the secretion of insulin. This finding has the potential to spur the development of new treatments for diabetes that stimulate the production of insulin-producing beta cells in the pancreas. This latest research, conducted with researchers at Beth Israel Deaconess Medical Center in Boston and other institutions, will appear in the February 2007 issue of Diabetes.

An earlier Joslin-led study examined the connection between obesity and MCH, which plays a critical role in energy balance and appetite, observing an increase in the number of beta cells when MCH levels are high. This was a new finding that had not been observed before. Although MCH’s role in appetite control is well known, its effects on the secretion of endocrine hormones has not been fully understood.

“It’s a very logical connection,” says Rohit N. Kulkarni, M.D., Ph.D., investigator at Joslin Diabetes Center and Assistant Professor of Medicine at Harvard Medical School, who led the study. “Whenever you eat food, your body needs more insulin. When MCH induces appetite, it simultaneously increases insulin secretion from beta cells and enhances growth of beta cells. If the proteins that mediate the growth mechanism can be identified, it could lead to the development of new drugs that would enhance beta cell growth to treat type 1 and type 2 diabetes.”

... more about:
»Diabetes »Insulin »Kulkarni »MCH »appetite »islet »secretion

In type 1 diabetes (insulin-dependent) diabetes, which accounts for 5 to 10 percent (between 700,000 and 1.4 million people) of diabetes cases in the United States, an autoimmune process has destroyed the insulin-producing islet cells in the pancreas. In type 2 diabetes, the far more common form of the disease, the body doesn’t produce enough insulin and/or can’t use insulin properly (insulin resistance). Both diseases could benefit from treatments that stimulate beta cells in the pancreas to produce insulin.

In the first study, in which mice were genetically engineered to over-express MCH, Dr. Kulkarni and his colleagues observed changes in beta cell mass out of proportion with the degree of obesity, suggesting that MCH had a direct effect on islets. To build on these previous findings, the researchers focused this study on gaining a deeper understanding of how MCH and its receptors influence growth of beta cells.

The investigators first confirmed that MCH and its receptors are indeed expressed in islet cells of mice and humans. They then treated human donor or mouse pancreatic islet cells with MCH and found that it increased insulin secretion, compared to islet cells without MCH, which did not show the same effect.

In the next phase, the researchers examined genetically-engineered mice that did not produce MCH and consequently had abnormally small islets. “This indicated to us that MCH is important for growth of islets,” says Dr. Kulkarni.

The next step in the research process is to pinpoint exactly how MCH is regulating the growth of beta cells and identify which proteins are involved in this growth process. “We know MCH is having an effect on both growth and function likely by recruiting different proteins. It will be worth exploring which proteins are being activated by MCH to cause the growth effect,” Dr. Kulkarni explains.

A follow-up study has been designed and is currently awaiting funding. It will look at how MCH interacts with glucagon-like peptide 1 (GLP-1), a hormone involved in beta cell growth. An analogue of GLP-1 hormone has already been approved by the FDA for treating type 2 diabetes. The goal is to understand how GLP-1 and MCH can work together to promote beta cell growth.

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu

Further reports about: Diabetes Insulin Kulkarni MCH appetite islet secretion

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>