Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene therapy of AIDS

Specialists of the V.A. Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, and the “Vector” Main Research Center of Virology and Biotechnology created and tested on the cell culture three genetic structures capable to suppress reproduction of human immunodeficiency virus (HIV-1) in human cells.

At present, the virus is fought against by chemical agents. The drugs subscribed to the patients act predominantly on key HIV-1 enzymes - reverse transcriptase, invertase and protease. There are a lot of antiviral drugs, but they are often ineffective as HIV mutates quickly and acquires drug resistance. And these drugs are, one should note, toxic and very expensive.

Meanwhile, the human organism’s cells possess powerful natural mechanism which should regulate the work of genes including viral ones. It is called RNA-interference. In an extremely simplified form, RNA-interference is damage to a certain RNA sequence with participation of a different, “defending” RNA molecule. This system prevents viral infection, unless viruses had learned to cut it off in the course of evolution. Researchers from countries including Russia are developing the artificial RNA-interference system. It is non-injurious to the patient and, due to high specificity of action, does not damage its own RNA in cells infected by the virus.

To fight against HIV, Russian biologists have created three genetic structures. These structures contain short nucleotide sequences that find the most conservative molecules among all RNA molecules, that is, sequences that do not change quickly and are important to the virus. These sequences are then “damaged”. The structure also includes the gene of green fluorescent protein, which allows to determine is the gene structure has entered the cell or not.

... more about:
»RNA »sequence »structure

The researchers embedded the gene structures created by them into cultivated lymphoid cells. Cells which have been penetrated by the fluorescent protein begin to glow with green. Within 24 and 72 hours after introduction of genetic structures, the cells were infected by human immunodeficiency virus (GKV-4046 culture), and several days later the researchers assessed the degree of viral welfare by specific antigen accumulation. It has turned out that the genetic structures significantly suppress viral reproduction.

The extent of damage to viral RNA depends on the viral dose received by the cell itself and on the sequence of the structure per se. The sequence aimed at the reverse transcriptase area of viral genome turned out to be the most efficient, being capable of suppressing the viral production in the cells by 91 to 98 percent within three days.

In the researchers’ opinion, similar genetic structures can be used in AIDS gene therapy. At present, the researchers continue the effort on creation of efficiently operating structures, including the ones that are able to overcome high virus mutation.

Nadezda Markina | alfa
Further information:

Further reports about: RNA sequence structure

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>