Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy of AIDS

29.01.2007
Specialists of the V.A. Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, and the “Vector” Main Research Center of Virology and Biotechnology created and tested on the cell culture three genetic structures capable to suppress reproduction of human immunodeficiency virus (HIV-1) in human cells.

At present, the virus is fought against by chemical agents. The drugs subscribed to the patients act predominantly on key HIV-1 enzymes - reverse transcriptase, invertase and protease. There are a lot of antiviral drugs, but they are often ineffective as HIV mutates quickly and acquires drug resistance. And these drugs are, one should note, toxic and very expensive.

Meanwhile, the human organism’s cells possess powerful natural mechanism which should regulate the work of genes including viral ones. It is called RNA-interference. In an extremely simplified form, RNA-interference is damage to a certain RNA sequence with participation of a different, “defending” RNA molecule. This system prevents viral infection, unless viruses had learned to cut it off in the course of evolution. Researchers from countries including Russia are developing the artificial RNA-interference system. It is non-injurious to the patient and, due to high specificity of action, does not damage its own RNA in cells infected by the virus.

To fight against HIV, Russian biologists have created three genetic structures. These structures contain short nucleotide sequences that find the most conservative molecules among all RNA molecules, that is, sequences that do not change quickly and are important to the virus. These sequences are then “damaged”. The structure also includes the gene of green fluorescent protein, which allows to determine is the gene structure has entered the cell or not.

... more about:
»RNA »sequence »structure

The researchers embedded the gene structures created by them into cultivated lymphoid cells. Cells which have been penetrated by the fluorescent protein begin to glow with green. Within 24 and 72 hours after introduction of genetic structures, the cells were infected by human immunodeficiency virus (GKV-4046 culture), and several days later the researchers assessed the degree of viral welfare by specific antigen accumulation. It has turned out that the genetic structures significantly suppress viral reproduction.

The extent of damage to viral RNA depends on the viral dose received by the cell itself and on the sequence of the structure per se. The sequence aimed at the reverse transcriptase area of viral genome turned out to be the most efficient, being capable of suppressing the viral production in the cells by 91 to 98 percent within three days.

In the researchers’ opinion, similar genetic structures can be used in AIDS gene therapy. At present, the researchers continue the effort on creation of efficiently operating structures, including the ones that are able to overcome high virus mutation.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: RNA sequence structure

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>