Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of anesthetics in Alzheimer's disease: Molecular details revealed

26.01.2007
Inhaled anesthetics commonly used in surgery are more likely to cause the aggregation of Alzheimer's disease-related plaques in the brain than intravenous anesthetics say University of Pittsburgh School of Medicine researchers in a journal article published in the Jan. 23 issue of Biochemistry.

This is the first report using state-of-the-art nuclear magnetic resonance (NMR) spectroscopic technique to explain the detailed molecular mechanism behind the aggregation of amyloid â (Aâ) peptide due to various anesthetics.

Aâ plaques are found in the brains of people with Alzheimer's disease. Many believe that the uncontrolled clumping of Aâ is the cause of Alzheimer's disease and that the similar aggregation of peptides and proteins play a role in the development of other neurodegenerative diseases such as Parkinson's disease.

"Many people know of or have heard of an elderly person who went into surgery where they received anesthesia and when they woke up they had noticeable memory loss or cognitive dysfunction," said Pravat K. Mandal, Ph.D., assistant professor of psychiatry, University of Pittsburgh School of Medicine and lead author of the study. Previous studies by the Pittsburgh researchers found that the inhaled anesthetics halothane and isoflurane and the intravenous anesthetic propofol encouraged the growth and clumping of Aâ in a test tube experiment.

... more about:
»Aggregation »Peptide »anesthetic »intravenous

"Our prior research had shown in molecular models that anesthetics may play a role by causing amyloid peptides to clump together—something that is thought to signal the advancement of Alzheimer's disease. In this study, we set out to see why this was happening and to determine if any one form of anesthesia might be a safer option than another," said Dr. Mandal.

In this study the researchers used NMR spectroscopy to determine how the inhaled anesthetics halothane and isoflurane and the intravenous anesthetics propofol and thiopental interact with Aâ influencing the aggregation of Aâ in forms commonly found in the brains of people with Alzheimer's disease. The results were strikingly different between the inhaled and injected anesthetics. The inhaled halothane and isoflurane had the most potent interaction with Aâ peptides causing the highest levels of Aâ aggregation. The injected anesthetic propofol only interacted and caused aggregation at high concentrations—interaction was not evident at lower concentrations. The intravenous thiopental did not cause the clustering of Aâ peptides even at high concentrations. Additionally, the molecular details for the interaction of these anesthetics with Aâ peptide were revealed.

Dr. Mandal noted that if the same thing occurs in humans, anesthetics could lead to more amyloid plaques which may lead to earlier memory problems, warranting further studies of anesthetics with Aâ both in laboratory and clinical settings.

Jocelyn Uhl Duffy | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Aggregation Peptide anesthetic intravenous

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>