Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells cultured from human bone marrow behave like those derived from brain tissue

26.01.2007
Stem cells taken from adult human bone marrow have been manipulated by scientists at the Maxine Dunitz Neurosurgical Institute at Cedars-Sinai Medical Center to generate aggregates of cells called spheres that are similar to those derived from neural stem cells of the brain.

In addition, the bone marrow-derived stem cells, which could be differentiated into neurons and other cells making up the central nervous system, spread far and wide and behaved like neural stem cells when transplanted into the brain tissue of chicken embryos.

Results of the experiments, described in the February 2007 of the Journal of Neuroscience Research, support the concept of using bone marrow-derived stem cells to create therapies to treat brain tumors, strokes and neurodegenerative diseases. A similar study using bone marrow-derived stem cells of rats appeared as the cover article of the December 2002 issue of Experimental Neurology.

"These findings reinforce the data that came from our study of rat bone marrow-derived stem cells," said John S. Yu, M.D., neurosurgeon, co-director of the Comprehensive Brain Tumor Program, and senior author of both articles. "Using two methods, we show evidence for the bone marrow-derived stem cells being neural cells, and we demonstrate that it is feasible to grow the cells in large numbers. We also document that these cells function electrophysiologically as neurons, using similar voltage-regulating mechanisms."

Progressing from the rat study to experiments with human cells and transplantation into mammal brain tissue, the research team continues to build a foundation for translating laboratory research into human clinical trials.

"Based on our studies to date, a patient's own bone marrow appears to offer a viable and renewable source of neural stem cells, allowing us to avoid many of the issues related to other types of stem cells," said Keith L. Black, M.D., director of the Maxine Dunitz Neurosurgical Institute and chairman of Cedars-Sinai's Department of Neurosurgery.

The replacement of damaged brain cells with healthy cells cultured from stem cells is considered to potentially be a promising therapy for the treatment of stroke, neurodegenerative disorders and even brain tumors, but finding a reliable source for generating neural cells for transplantation has been a challenge. The use of embryonic and fetal tissue has raised ethical questions among some, and brings with it the possibility of immune rejection. And while neural stem cells can be taken from brain tissue, the removal of healthy tissue from a patient's brain introduces a new set of safety, practicality and ethical issues.

In their recent work, the Cedars-Sinai researchers documented that several genes that speed up and control the proliferation process could be used to rapidly expand the supply of marrow-derived neural stem cells, writing in the article that "this novel method of expansion … may prove to be useful in the design of novel therapeutics for the treatment of brain disorders, including tumors."

Sandy Van | EurekAlert!
Further information:
http://www.csmc.edu/

Further reports about: brain tumor marrow marrow-derived neural stem cells

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>