Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells cultured from human bone marrow behave like those derived from brain tissue

26.01.2007
Stem cells taken from adult human bone marrow have been manipulated by scientists at the Maxine Dunitz Neurosurgical Institute at Cedars-Sinai Medical Center to generate aggregates of cells called spheres that are similar to those derived from neural stem cells of the brain.

In addition, the bone marrow-derived stem cells, which could be differentiated into neurons and other cells making up the central nervous system, spread far and wide and behaved like neural stem cells when transplanted into the brain tissue of chicken embryos.

Results of the experiments, described in the February 2007 of the Journal of Neuroscience Research, support the concept of using bone marrow-derived stem cells to create therapies to treat brain tumors, strokes and neurodegenerative diseases. A similar study using bone marrow-derived stem cells of rats appeared as the cover article of the December 2002 issue of Experimental Neurology.

"These findings reinforce the data that came from our study of rat bone marrow-derived stem cells," said John S. Yu, M.D., neurosurgeon, co-director of the Comprehensive Brain Tumor Program, and senior author of both articles. "Using two methods, we show evidence for the bone marrow-derived stem cells being neural cells, and we demonstrate that it is feasible to grow the cells in large numbers. We also document that these cells function electrophysiologically as neurons, using similar voltage-regulating mechanisms."

Progressing from the rat study to experiments with human cells and transplantation into mammal brain tissue, the research team continues to build a foundation for translating laboratory research into human clinical trials.

"Based on our studies to date, a patient's own bone marrow appears to offer a viable and renewable source of neural stem cells, allowing us to avoid many of the issues related to other types of stem cells," said Keith L. Black, M.D., director of the Maxine Dunitz Neurosurgical Institute and chairman of Cedars-Sinai's Department of Neurosurgery.

The replacement of damaged brain cells with healthy cells cultured from stem cells is considered to potentially be a promising therapy for the treatment of stroke, neurodegenerative disorders and even brain tumors, but finding a reliable source for generating neural cells for transplantation has been a challenge. The use of embryonic and fetal tissue has raised ethical questions among some, and brings with it the possibility of immune rejection. And while neural stem cells can be taken from brain tissue, the removal of healthy tissue from a patient's brain introduces a new set of safety, practicality and ethical issues.

In their recent work, the Cedars-Sinai researchers documented that several genes that speed up and control the proliferation process could be used to rapidly expand the supply of marrow-derived neural stem cells, writing in the article that "this novel method of expansion … may prove to be useful in the design of novel therapeutics for the treatment of brain disorders, including tumors."

Sandy Van | EurekAlert!
Further information:
http://www.csmc.edu/

Further reports about: brain tumor marrow marrow-derived neural stem cells

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>