Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research study reveals new function of protein kinase pathway in tumor suppression

26.01.2007
Discovery could lead to drug development for cancer treatment

The study, led by Associate Professor Peiqing Sun and Professor Jiahuai Han of The Scripps Research Institute, is being published on January 26, 2007 in the journal Cell.

The research focused on signaling pathways that mediate an anti-tumor defense response called senescence, or cellular aging. The research, which was conducted in both human cell culture and rodent models with skin cancer or lymphoma, identified one essential element of this anti-tumor response, namely, p38-regulated/activated protein kinase (PRAK). Previous to this research, PRAK's physiological functions had been poorly understood.

"In uncovering this basic mechanism, we've advanced our knowledge in terms of how cancers develop," Sun said. "More importantly, we have identified a pathway in normal cells that, when activated, can inhibit tumor development. This lays the groundwork for new cancer therapy--for future drug development to artificially activate this pathway in cancer cells."

The human body has several built-in mechanisms that prevent cancer development. One is cell death, or apoptosis. Another is premature senescence, a recently identified tumor-restricting response that permanently stops cell proliferation.

"A normal cell stops dividing when it gets old," Sun explained. "This is referred to as senescence of a cell. A young cell will become senescent prematurely when it acquires a mutation that activates an oncogene. This is one of the ways our body tries to eliminate cells that might become cancerous."

In previous research that set the stage for this current project, Sun's lab worked to identify the signaling cascade that mediates ras-induced premature senescence (ras is an oncogene, a gene that, when activated by mutations, causes cancer by transducing unrestricted growth signals). Using human cells in culture, Sun's team showed that the p38 mitogen-activated protein (MAP) kinase is required for ras to induce senescence in cell culture.

"After these findings, we wanted to look downstream of p38 to see exactly how this MAP kinase mediates senescence," Sun explained. "We knew the effect of p38 is achieved through its ability to regulate its downstream substrates, so we started to investigate various substrate candidates to see which ones were involved."

Fortunately, Sun added, his research team could easily link up with a leading expert in the p38 field, Professor Jiahuai Han. The p38 gene was cloned by Han in 1994. Since then, the Han lab has identified some p38 downstream protein kinases, including PRAK, and has shown that PRAK can be activated by various stresses. The Han research group also engineered PRAK knockout mice, animals that lack the PRAK gene, expecting that these mice would be defective in stress response. To the researchers' surprise, the mice responded normally to stresses, an indication that this gene may not be required for the stress pathway.

Joining forces, Sun and Han collaborated to investigate the role of PRAK in senescence response and tumor suppression. They also enlisted the expertise of Scripps Research investigators John Yates and Peter Wright and their laboratory groups.

What the researchers found was that PRAK is required for ras to induce senescence in vitro in normal cells derived from a mouse. They also did an experiment to see if the lack of PRAK would make a difference in senescence induction in human cells. The team introduced double-strand RNA into normal human fibroblast cells to inhibit the expression of PRAK and then activated the ras oncogene in these cells. The results were identical to those in mouse cells. When PRAK was inactivated in normal human cells, these cells did not undergo premature senescence.

"These experiments tell us that PRAK in both human cells and in mouse cells is an essential component that mediates ras-induced senescence," said Sun.

The researchers wanted, next, to find out whether PRAK was essential for ras-induced senescence in vivo, and whether deletion of the PRAK gene would make a difference in the ras-induced tumor-development process in PRAK knockout mice. A group of these mice and a group of normal mice were treated with DMBA, an environmental pollutant found in cigarette smoke and gas emissions, which can induce ras mutations and cause skin tumor formation. The researchers monitored the incidence of skin tumor formation in these mice, and after tumors formed, the degree of cell senescence in the tumors. The results, Sun said, were exciting.

"The mice lacking the PRAK gene were more susceptible to skin tumor induction by DMBA, as compared to wild-type mice," Sun said. "This indicates that the presence of the normal PRAK gene suppresses tumor formation. In the wild-type, normal mice, DMBA induced premature senescence, but in the knockout tumors there were no senescent cells. The PRAK knockout animals were resistant to ras-induced senescence but prone to tumor induction, which led us to the happy conclusion that PRAK and the senescence response mediated by PRAK has a tumor-suppressing function in vivo. The knockout mice were more vulnerable to tumor induction because the senescence pathway, which is responsible for the anti-tumor self-defense mechanism, had been compromised. In addition to the skin cancer model, loss of the PRAK gene in mice also accelerates lymphoma development, which indicates that PRAK may be involved in suppressing tumor formation in multiple tissues."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Han Kinase PRAK Ras mediate p38 premature ras-induced senescence tumor formation

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>