Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chopping off protein puts immune cells into high gear

26.01.2007
St. Jude study shows LAG-3 protein on activated T lymphocytes slows replication until ADAM10 and ADAM17 enzymes cleave it off to allow these cells to reproduce rapidly

The complex task of launching a well-organized, effective immune system attack on specific targets is thrown into high gear when either of two specific enzymes chop a protein called LAG-3 off the immune cells leading that battle, according to investigators at St. Jude Children's Research Hospital.

These cells, called T lymphocytes, are key to the body’s ability to fight off infections, tailoring the immune response so it focuses on specific targets. When activated, certain T lymphocytes called effector T cells reproduce, increasing their numbers and enhancing their ability to protect the body.

The St. Jude finding is important because it represents a new concept in how T cells are regulated, according to Dario Vignali, Ph.D., associate member of the St. Jude Department of Immunology. The study offers the first example of a protein that is required for dampening T cell activity being controlled by getting chopped off at the T cell’s surface. Certain drugs that inhibit metalloproteases now under development as treatments for multiple sclerosis and arthritis appear to work by keeping T cells on a tight leash, Vignali noted. The new discovery could demonstrate an additional way in which these drugs work. Vignali is senior author of a report on this work that appears in the January 24 issue of The EMBO Journal.

The investigators performed their studies using animal cells that were genetically modified to carry LAG-3 on their surface; the researchers also used drugs that inhibit enzymes that chop off LAG-3. The team demonstrated that the two enzymes that cleave LAG-3 are controlled by of distinct but overlapping signals generated from the T cell receptor, a specialized protein that allows T lymphocytes to “see” the outside world. The investigators showed that the T cell receptor generates a different, specific signal to control the activity of these metalloprotease enzymes, called ADAM10 and ADAM17.

Specifically, the team demonstrated that ADAM10 normally cleaves LAG-3 even before the T cells are activated. After the T cell receptor receives signals from the immune system, it causes the gene for ADAM10 to make much more of this enzyme, substantially increasing the rate of LAG-3 cleavage. However, ADAM17 is inactive until the T cell receptor triggers a molecule called protein kinase C theta to activate this enzyme. In either case, when metalloproteases remove LAG-3, the brakes are taken off T cell activity.

“Appropriate control of T cell expansion during an immune response is critical,” Vignali said. “We have uncovered a new paradigm in which specialized cell surface enzymes control this process by modulating the expression of a molecule, LAG-3, that acts as an immunological molecular brake. In turn, this process is controlled by the strength of the T cell receptor signal—the immunological ‘accelerator.’ So the more the T cell ‘accelerates,’ the more the ‘brake’ is released.”

The St. Jude team previously reported that regulatory T cells, which prevent effector T cells from running out of control and causing damage to the body, use LAG-3 to rein in these activated effector T cells (http://www.stjude.org/media/0,2561,453_5297_16097,00.html). The current study in EMBO extends that finding by showing that cleavage of LAG-3 proteins on the surface of T cells allows them to greatly increase their proliferation rate during such a battle. The team also showed that cleaved pieces of LAG-3 do not contribute to T cell control, but are rather “waste” products that are swept away later.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: ADAM10 LAG-3 Metalloprotease T cells Vignali enzyme lymphocytes

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>