Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chopping off protein puts immune cells into high gear

26.01.2007
St. Jude study shows LAG-3 protein on activated T lymphocytes slows replication until ADAM10 and ADAM17 enzymes cleave it off to allow these cells to reproduce rapidly

The complex task of launching a well-organized, effective immune system attack on specific targets is thrown into high gear when either of two specific enzymes chop a protein called LAG-3 off the immune cells leading that battle, according to investigators at St. Jude Children's Research Hospital.

These cells, called T lymphocytes, are key to the body’s ability to fight off infections, tailoring the immune response so it focuses on specific targets. When activated, certain T lymphocytes called effector T cells reproduce, increasing their numbers and enhancing their ability to protect the body.

The St. Jude finding is important because it represents a new concept in how T cells are regulated, according to Dario Vignali, Ph.D., associate member of the St. Jude Department of Immunology. The study offers the first example of a protein that is required for dampening T cell activity being controlled by getting chopped off at the T cell’s surface. Certain drugs that inhibit metalloproteases now under development as treatments for multiple sclerosis and arthritis appear to work by keeping T cells on a tight leash, Vignali noted. The new discovery could demonstrate an additional way in which these drugs work. Vignali is senior author of a report on this work that appears in the January 24 issue of The EMBO Journal.

The investigators performed their studies using animal cells that were genetically modified to carry LAG-3 on their surface; the researchers also used drugs that inhibit enzymes that chop off LAG-3. The team demonstrated that the two enzymes that cleave LAG-3 are controlled by of distinct but overlapping signals generated from the T cell receptor, a specialized protein that allows T lymphocytes to “see” the outside world. The investigators showed that the T cell receptor generates a different, specific signal to control the activity of these metalloprotease enzymes, called ADAM10 and ADAM17.

Specifically, the team demonstrated that ADAM10 normally cleaves LAG-3 even before the T cells are activated. After the T cell receptor receives signals from the immune system, it causes the gene for ADAM10 to make much more of this enzyme, substantially increasing the rate of LAG-3 cleavage. However, ADAM17 is inactive until the T cell receptor triggers a molecule called protein kinase C theta to activate this enzyme. In either case, when metalloproteases remove LAG-3, the brakes are taken off T cell activity.

“Appropriate control of T cell expansion during an immune response is critical,” Vignali said. “We have uncovered a new paradigm in which specialized cell surface enzymes control this process by modulating the expression of a molecule, LAG-3, that acts as an immunological molecular brake. In turn, this process is controlled by the strength of the T cell receptor signal—the immunological ‘accelerator.’ So the more the T cell ‘accelerates,’ the more the ‘brake’ is released.”

The St. Jude team previously reported that regulatory T cells, which prevent effector T cells from running out of control and causing damage to the body, use LAG-3 to rein in these activated effector T cells (http://www.stjude.org/media/0,2561,453_5297_16097,00.html). The current study in EMBO extends that finding by showing that cleavage of LAG-3 proteins on the surface of T cells allows them to greatly increase their proliferation rate during such a battle. The team also showed that cleaved pieces of LAG-3 do not contribute to T cell control, but are rather “waste” products that are swept away later.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: ADAM10 LAG-3 Metalloprotease T cells Vignali enzyme lymphocytes

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>