Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning a cellular sentinel into a cancer killer

26.01.2007
Howard Hughes Medical Institute researchers have developed two strategies to reactivate the p53 gene in mice, causing blood, bone and liver tumors to self destruct. The p53 protein is called the "guardian of the genome" because it triggers the suicide of cells with damaged DNA.

Inactivation of p53 can set the stage for the development of different types of cancer. The researchers' findings show for the first time that inactivating the p53 gene is necessary for maintaining tumors. While the researchers caution that cancers can mutate to circumvent p53 reactivation, they believe their findings offer ideas for new approaches to cancer therapy.

The research was carried out independently by two Howard Hughes Medical Institute (HHMI) research teams led by Tyler Jacks at the Massachusetts Institute of Technology and Scott Lowe at Cold Spring Harbor Laboratory. Both papers were published online January 24, 2007, in advance online publication articles in the journal Nature. Although researchers have long known that p53 inactivation plays a central role in the development of cancer, little was known about whether p53 inactivation played a role in maintaining cancers. And researchers were not sure whether switching p53 back on in tumor cells would have any therapeutic effect.

"It had been demonstrated that overexpressing p53 at very high levels could arrest or kill tumors, said Lowe. "But at such high levels, p53 might not be working through a physiological mechanism. So, it was an open question whether restoring the p53 pathway would have any anti-tumor effect." For one thing, the high mutation rate in cancers might enable a cancer to switch the p53 pathway back off, or to circumvent the pathway in some other fashion. For those reasons, researchers were not sure whether the pathway would be a useful therapeutic target.

To reactivate p53, Lowe and his colleagues used a genetic technique they had developed to induce an aggressive form of liver cancer in mice. Although they had inactivated p53 in the mice, they genetically engineered the mice so that they could reverse p53 inactivation by giving the animals the antibiotic doxycycline. They suppressed p53 protein levels by using RNA interference (RNAi) that had been modified so that RNAi could be switched off by the antibiotic. The RNA interference technology was developed in collaboration with HHMI investigator Gregory Hannon at Cold Spring Harbor Laboratory.

When the researchers reactivated p53 in the mice they found that the liver tumors completely disappeared. "This was quite surprising," said Lowe. "We were working with a very advanced, aggressive tumor, but when we reestablished p53, not only did it stop growing, it went away.

"But the second surprise—and perhaps the more scientifically interesting one—was why the tumor went away," said Lowe.

"We expected the tumor cells to undergo programmed cell death, or apoptosis. But instead, we saw evidence for a very different process that p53 also regulates—senescence, or growth arrest. What really excited us was evidence that this senescence somehow triggered the innate immune system to kill the tumor cells." Involvement of the innate immune system suggests there may be an unknown mechanism by which cancers can trigger the immune system, he said. Lowe and his colleagues are now exploring how the innate immune system might be enlisted against cancer.

Jacks's team used a different technique to reactivate p53 in lymphomas and sarcomas. In their experiments, the researchers produced mice whose cells did not have p53 activity. These mice were genetically engineered so that the drug tamoxifen could be used to switch on p53 activity.

"When we reactivated p53 in these mice, we saw two distinct tumor phenotypes," said Jacks. "In lymphomas the responses were rapid, extensive and were accompanied by the induction of apoptosis. In the sarcomas, the response was less rapid often less extensive and was not accompanied by apoptosis. Instead the cells underwent cell cycle arrest with features of senescence."

Jacks said that he and his colleagues found no evidence that restoring p53 affected normal cells. "That gives us a broader therapeutic window in which the cancer cells respond rapidly by one of these two mechanisms, whereas normal cells seem to tolerate reactivation of p53 quite well," he said.

In the December 29, 2006, issue of the journal Cell, Gerard Evan at the University of California at San Francisco reported that p53 restoration was effective in killing lymphoma tumor cells.

In a News & Views commentary published in Nature, Norman Sharpless and Ronald DePinho wrote that "these three papers provide reason for cautious optimism that reactivation of p53, and possibly of other tumour-suppressor genes, might be useful in treating certain cancers." However, they noted that Evan and his colleagues had seen rapid appearance of tumors that progressed despite p53 expression, indicating that cancers can mutate to deactivate the pathway or circumvent it.

Both Lowe and Jacks said they agreed that therapies aimed at reactivating p53 would still have to cope with the adaptability of cancers. "For any therapies based on these findings, you would have to imagine that sooner or later, resistance would develop," said Lowe. "And I think the challenge—which is true for any therapy where you can get resistance—is to come up with combination treatments that take out enough of the cancer cells early on that there aren't enough variants left to get around the p53 pathway."

Jacks added that "the main point is that—although there are differences between these mouse models and human cancers—we now can say with some confidence that established tumors are sensitive to p53 reactivation. There are already a number of treatment strategies being tested to restore p53 function, and these might well be expected to have therapeutic benefits."

Lowe emphasized that these new experimental techniques for reactivating p53 could also be applied to study the effects of other regulatory molecules on cancers. "We think we have a really powerful technology that could be generalized, not only to study tumor suppressors, but also molecules that might be important drivers of tumorigenesis, making them good drug targets," he said. "For these, we could do the converse experiment, letting the tumor develop and then using our technique to knock out the molecule and see whether the tumor goes away."

Jacks and his colleagues next plan to study the effects of p53 reactivation in other cancers. They hope to use the technology to understand why some cancers respond by undergoing apoptosis, while others undergo senescence.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: apoptosis immune system lymphoma p53 reactivate reactivation therapeutic tumor cells

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>