Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning a cellular sentinel into a cancer killer

26.01.2007
Howard Hughes Medical Institute researchers have developed two strategies to reactivate the p53 gene in mice, causing blood, bone and liver tumors to self destruct. The p53 protein is called the "guardian of the genome" because it triggers the suicide of cells with damaged DNA.

Inactivation of p53 can set the stage for the development of different types of cancer. The researchers' findings show for the first time that inactivating the p53 gene is necessary for maintaining tumors. While the researchers caution that cancers can mutate to circumvent p53 reactivation, they believe their findings offer ideas for new approaches to cancer therapy.

The research was carried out independently by two Howard Hughes Medical Institute (HHMI) research teams led by Tyler Jacks at the Massachusetts Institute of Technology and Scott Lowe at Cold Spring Harbor Laboratory. Both papers were published online January 24, 2007, in advance online publication articles in the journal Nature. Although researchers have long known that p53 inactivation plays a central role in the development of cancer, little was known about whether p53 inactivation played a role in maintaining cancers. And researchers were not sure whether switching p53 back on in tumor cells would have any therapeutic effect.

"It had been demonstrated that overexpressing p53 at very high levels could arrest or kill tumors, said Lowe. "But at such high levels, p53 might not be working through a physiological mechanism. So, it was an open question whether restoring the p53 pathway would have any anti-tumor effect." For one thing, the high mutation rate in cancers might enable a cancer to switch the p53 pathway back off, or to circumvent the pathway in some other fashion. For those reasons, researchers were not sure whether the pathway would be a useful therapeutic target.

To reactivate p53, Lowe and his colleagues used a genetic technique they had developed to induce an aggressive form of liver cancer in mice. Although they had inactivated p53 in the mice, they genetically engineered the mice so that they could reverse p53 inactivation by giving the animals the antibiotic doxycycline. They suppressed p53 protein levels by using RNA interference (RNAi) that had been modified so that RNAi could be switched off by the antibiotic. The RNA interference technology was developed in collaboration with HHMI investigator Gregory Hannon at Cold Spring Harbor Laboratory.

When the researchers reactivated p53 in the mice they found that the liver tumors completely disappeared. "This was quite surprising," said Lowe. "We were working with a very advanced, aggressive tumor, but when we reestablished p53, not only did it stop growing, it went away.

"But the second surprise—and perhaps the more scientifically interesting one—was why the tumor went away," said Lowe.

"We expected the tumor cells to undergo programmed cell death, or apoptosis. But instead, we saw evidence for a very different process that p53 also regulates—senescence, or growth arrest. What really excited us was evidence that this senescence somehow triggered the innate immune system to kill the tumor cells." Involvement of the innate immune system suggests there may be an unknown mechanism by which cancers can trigger the immune system, he said. Lowe and his colleagues are now exploring how the innate immune system might be enlisted against cancer.

Jacks's team used a different technique to reactivate p53 in lymphomas and sarcomas. In their experiments, the researchers produced mice whose cells did not have p53 activity. These mice were genetically engineered so that the drug tamoxifen could be used to switch on p53 activity.

"When we reactivated p53 in these mice, we saw two distinct tumor phenotypes," said Jacks. "In lymphomas the responses were rapid, extensive and were accompanied by the induction of apoptosis. In the sarcomas, the response was less rapid often less extensive and was not accompanied by apoptosis. Instead the cells underwent cell cycle arrest with features of senescence."

Jacks said that he and his colleagues found no evidence that restoring p53 affected normal cells. "That gives us a broader therapeutic window in which the cancer cells respond rapidly by one of these two mechanisms, whereas normal cells seem to tolerate reactivation of p53 quite well," he said.

In the December 29, 2006, issue of the journal Cell, Gerard Evan at the University of California at San Francisco reported that p53 restoration was effective in killing lymphoma tumor cells.

In a News & Views commentary published in Nature, Norman Sharpless and Ronald DePinho wrote that "these three papers provide reason for cautious optimism that reactivation of p53, and possibly of other tumour-suppressor genes, might be useful in treating certain cancers." However, they noted that Evan and his colleagues had seen rapid appearance of tumors that progressed despite p53 expression, indicating that cancers can mutate to deactivate the pathway or circumvent it.

Both Lowe and Jacks said they agreed that therapies aimed at reactivating p53 would still have to cope with the adaptability of cancers. "For any therapies based on these findings, you would have to imagine that sooner or later, resistance would develop," said Lowe. "And I think the challenge—which is true for any therapy where you can get resistance—is to come up with combination treatments that take out enough of the cancer cells early on that there aren't enough variants left to get around the p53 pathway."

Jacks added that "the main point is that—although there are differences between these mouse models and human cancers—we now can say with some confidence that established tumors are sensitive to p53 reactivation. There are already a number of treatment strategies being tested to restore p53 function, and these might well be expected to have therapeutic benefits."

Lowe emphasized that these new experimental techniques for reactivating p53 could also be applied to study the effects of other regulatory molecules on cancers. "We think we have a really powerful technology that could be generalized, not only to study tumor suppressors, but also molecules that might be important drivers of tumorigenesis, making them good drug targets," he said. "For these, we could do the converse experiment, letting the tumor develop and then using our technique to knock out the molecule and see whether the tumor goes away."

Jacks and his colleagues next plan to study the effects of p53 reactivation in other cancers. They hope to use the technology to understand why some cancers respond by undergoing apoptosis, while others undergo senescence.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: apoptosis immune system lymphoma p53 reactivate reactivation therapeutic tumor cells

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>