Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian researchers first to complete the human metabalome

26.01.2007
Researchers at the University of Alberta, in Edmonton, Canada, have announced the completion of the first draft of the human metabolome, the chemical equivalent of the human genome.

The metabolome is the complete complement of all small molecule chemicals (metabolites) found in or produced by an organism. By analogy, if the genome represents the blueprint of life, the metabolome represents the ingredients of life.

The scientists have catalogued and characterized 2,500 metabolites, 1,200 drugs and 3,500 food components that can be found in the human body.

The research is published in the journal Nucleic Acids Research.

... more about:
»Canada »Genom »Wishart »metabolite »metabolome

The researchers believe that the results of their work represent the starting point for a new era in diagnosing and detecting diseases.

They believe that the Human Metabolome Project (HMP), which began in Canada in 2004, will have a more immediate impact on medicine and medical practices than the Human Genome Project, because the metabolome is far more sensitive to the body's health and physiology.

"Metabolites are the canaries of the genome," says Project Leader Dr. Wishart, professor of computing science and biological sciences at the University of Alberta and Principal Investigator at NRC, National Institute for Nanotechnology. "A single base change in our DNA can lead to a 100,000X change in metabolite levels."

This $7.5 Million project funded by Genome Canada through Genome Alberta, the Canada Foundation for Innovation (CFI), Alberta Ingenuity Centre for Machine Learning, and the University of Alberta will have far reaching benefits to patient care.

"The results of this research will have a significant impact on the diagnosis, prediction, prevention and monitoring of many genetic, infectious and environmental diseases," stated Dr. David Bailey, President and CEO of Genome Alberta.

The metabolome is exquisitely sensitive to what a person eats, where they live, the time of day, the time of year, their general health and even their mood. The HMP is aimed at allowing doctors to better diagnose and treat diseases.

"Most medical tests today are based on measuring metabolites in blood or urine," Wishart says. "Unfortunately, less than 1% of known metabolites are being used in routine clinical testing. If you can only see 1% of what's going on in the body, you're obviously going to miss a lot."

By measuring or acquiring chemical, biological and disease association data on all known human metabolites, the HMP Consortium, which consists of some 50 scientists based at the University of Alberta and the University of Calgary, has spent the past two and half years compiling the remaining 95% of all known metabolites in the human metabolome. Detailed information about each of the 2500 metabolites identified so far can be found on the Human Metabolome Database (HMDB) at http://www.hmdb.ca.

"With the data in the HMDB, anyone can find out what metabolites are associated with which diseases, what the normal and abnormal concentrations are, where the metabolites are found or what genes are associated with which metabolites," Wishart says.

"It's the first time that this sort of data has been compiled into one spot. By decoding the human metabolome, we can identify and diagnose hundreds of diseases in a matter of seconds at a cost of pennies," Wishart added.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: Canada Genom Wishart metabolite metabolome

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>