Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian researchers first to complete the human metabalome

26.01.2007
Researchers at the University of Alberta, in Edmonton, Canada, have announced the completion of the first draft of the human metabolome, the chemical equivalent of the human genome.

The metabolome is the complete complement of all small molecule chemicals (metabolites) found in or produced by an organism. By analogy, if the genome represents the blueprint of life, the metabolome represents the ingredients of life.

The scientists have catalogued and characterized 2,500 metabolites, 1,200 drugs and 3,500 food components that can be found in the human body.

The research is published in the journal Nucleic Acids Research.

... more about:
»Canada »Genom »Wishart »metabolite »metabolome

The researchers believe that the results of their work represent the starting point for a new era in diagnosing and detecting diseases.

They believe that the Human Metabolome Project (HMP), which began in Canada in 2004, will have a more immediate impact on medicine and medical practices than the Human Genome Project, because the metabolome is far more sensitive to the body's health and physiology.

"Metabolites are the canaries of the genome," says Project Leader Dr. Wishart, professor of computing science and biological sciences at the University of Alberta and Principal Investigator at NRC, National Institute for Nanotechnology. "A single base change in our DNA can lead to a 100,000X change in metabolite levels."

This $7.5 Million project funded by Genome Canada through Genome Alberta, the Canada Foundation for Innovation (CFI), Alberta Ingenuity Centre for Machine Learning, and the University of Alberta will have far reaching benefits to patient care.

"The results of this research will have a significant impact on the diagnosis, prediction, prevention and monitoring of many genetic, infectious and environmental diseases," stated Dr. David Bailey, President and CEO of Genome Alberta.

The metabolome is exquisitely sensitive to what a person eats, where they live, the time of day, the time of year, their general health and even their mood. The HMP is aimed at allowing doctors to better diagnose and treat diseases.

"Most medical tests today are based on measuring metabolites in blood or urine," Wishart says. "Unfortunately, less than 1% of known metabolites are being used in routine clinical testing. If you can only see 1% of what's going on in the body, you're obviously going to miss a lot."

By measuring or acquiring chemical, biological and disease association data on all known human metabolites, the HMP Consortium, which consists of some 50 scientists based at the University of Alberta and the University of Calgary, has spent the past two and half years compiling the remaining 95% of all known metabolites in the human metabolome. Detailed information about each of the 2500 metabolites identified so far can be found on the Human Metabolome Database (HMDB) at http://www.hmdb.ca.

"With the data in the HMDB, anyone can find out what metabolites are associated with which diseases, what the normal and abnormal concentrations are, where the metabolites are found or what genes are associated with which metabolites," Wishart says.

"It's the first time that this sort of data has been compiled into one spot. By decoding the human metabolome, we can identify and diagnose hundreds of diseases in a matter of seconds at a cost of pennies," Wishart added.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: Canada Genom Wishart metabolite metabolome

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>