New nanotechnology able to examine single molecules, aiding in determining gene expression

Previously, researchers have been able to determine gene expression using microarray technology or DNA sequencing. However, such processes could not effectively measure single gene transcripts—the building blocks of gene expression. With their new approach, the researchers of the work reported in Nanotechnology were able to isolate and identify individual transcript molecules—a sensitivity not achieved with earlier methods.

“Gene expression profiling is used widely in basic biological research and drug discovery,” said Jason Reed of UCLA's Department of Chemistry and Biochemistry and the study's lead author. “Scientists have been hampered in their efforts to unlock the secrets of gene transcription in individual cells by the minute amount of material that must be analyzed. Nanotechnology allows us to push down to the level of individual transcript molecules.”

“We are likely to see more of these kinds of highly multi-disciplinary research aimed at single molecule sequencing, genomics, epigenomic, and proteomic analysis in the future,” added Bud Mishra, a professor of Computer Science, Mathematics, and Cell Biology from NYU's Courant Institute and School of Medicine. “The most exciting aspect of this approach is that as we understand how to intelligently combine various components of genomics, robotics, informatics, and nanotechnology—the so-called GRIN technology—the resulting systems will become simple, inexpensive, and commonplace.”

Media Contact

James Devitt EurekAlert!

More Information:

http://www.nyu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors