Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wanderlust -- deep-sea fauna under Antarctic ice shelf

25.01.2007
Under the former Larsen ice shelf east of the Antarctic Peninsula, deep-sea sea cucumbers and stalked feather stars were ubiquitously found in shallow waters. These animals usually inhabit far greater water depths.

The main aim of the current Polarstern expedition to Antarctica is the investigation of marine ecosystems under the former Larsen ice shelf. This "white spot" with regard to biodiversity research gave rise to the following questions: What kind of life actually existed under the former floating ice shelf which was up to several hundreds of meters thick? What are the prospects for the future after the collapse of the ice shelf? Obviously, prosperous life did not exist in the area where the Larsen B ice shelf broke off three years ago. This is surprising since Antarctica's seafloor communities are known for their rich assemblages of sessile sponges, cnidarians and moss animals. Instead, underwater video footage and catches of towed sampling gear revealed the dominance of typical deep-sea animals and corresponding life forms.

Here, sea cucumbers and stalked feather stars are the main representatives. These deep-sea inhabitants belong to a group called echinoderms. Until now, stalked feather stars have only been found sporadically and then only below 800m water depths in this sector of Antarctica. But locally in the Larsen B region, they occurred rather frequently at depths of merely 200m. "During my nine expeditions to Antarctica, the only time I have seen the two most abundant species of sea cucumbers was below the far bigger Filchner-Ronne ice shelf further south." This second encounter brought back chief scientist Julian Gutt's memories of his first trip to Antarctica and his PhD thesis 21 years ago. Preliminary results show that a unique macrofauna exists in conjunction with the ice shelf. The sea cucumber Elpidia is probably the most prominent deep-sea animal but is also known to occur in shallow Arctic waters. Maybe this is the reason why this animal is aptly named glacialis (icy) especially with regard to our confirmatory findings on the opposite pole – Antarctica.

This species, its bigger "sister" Scotoplanes globosa and other relatives according to their feeding mode are referred to as grazers. Myriads of single-celled algae that sink down to the seafloor are literally grazed by herds of sea cucumbers. The oceanographer Enrique Isla is excited about further processing the collected data back in the Marine Sciences Institute (ICM) in Barcelona. "Our measurements of environmental parameters of the sediment and the water column will contribute to answer the question, why there are such similarities between habitat use of the deep-sea and below the former ice shelf." Scientists on this expedition will meet again in autumn in Barcelona to work on a synthesis of various results combining the different aspects of ecosystem components. This workshop will be hosted by the ICM and is supported by the Census of Antarctic Marine Life (CAML). Marine ecologist Julian Gutt is looking to the future: "The minute we have a better understanding of how ecosystems under the ice shelf work we might dare to put forward prognoses how biodiversity on the seafloor changes with respect to ongoing atmospheric warming".

Dr. Angelika Dummermuth | EurekAlert!
Further information:
http://www.awi.de

Further reports about: Antarctic Deep-sea Larsen ecosystem

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>