Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wanderlust -- deep-sea fauna under Antarctic ice shelf

25.01.2007
Under the former Larsen ice shelf east of the Antarctic Peninsula, deep-sea sea cucumbers and stalked feather stars were ubiquitously found in shallow waters. These animals usually inhabit far greater water depths.

The main aim of the current Polarstern expedition to Antarctica is the investigation of marine ecosystems under the former Larsen ice shelf. This "white spot" with regard to biodiversity research gave rise to the following questions: What kind of life actually existed under the former floating ice shelf which was up to several hundreds of meters thick? What are the prospects for the future after the collapse of the ice shelf? Obviously, prosperous life did not exist in the area where the Larsen B ice shelf broke off three years ago. This is surprising since Antarctica's seafloor communities are known for their rich assemblages of sessile sponges, cnidarians and moss animals. Instead, underwater video footage and catches of towed sampling gear revealed the dominance of typical deep-sea animals and corresponding life forms.

Here, sea cucumbers and stalked feather stars are the main representatives. These deep-sea inhabitants belong to a group called echinoderms. Until now, stalked feather stars have only been found sporadically and then only below 800m water depths in this sector of Antarctica. But locally in the Larsen B region, they occurred rather frequently at depths of merely 200m. "During my nine expeditions to Antarctica, the only time I have seen the two most abundant species of sea cucumbers was below the far bigger Filchner-Ronne ice shelf further south." This second encounter brought back chief scientist Julian Gutt's memories of his first trip to Antarctica and his PhD thesis 21 years ago. Preliminary results show that a unique macrofauna exists in conjunction with the ice shelf. The sea cucumber Elpidia is probably the most prominent deep-sea animal but is also known to occur in shallow Arctic waters. Maybe this is the reason why this animal is aptly named glacialis (icy) especially with regard to our confirmatory findings on the opposite pole – Antarctica.

This species, its bigger "sister" Scotoplanes globosa and other relatives according to their feeding mode are referred to as grazers. Myriads of single-celled algae that sink down to the seafloor are literally grazed by herds of sea cucumbers. The oceanographer Enrique Isla is excited about further processing the collected data back in the Marine Sciences Institute (ICM) in Barcelona. "Our measurements of environmental parameters of the sediment and the water column will contribute to answer the question, why there are such similarities between habitat use of the deep-sea and below the former ice shelf." Scientists on this expedition will meet again in autumn in Barcelona to work on a synthesis of various results combining the different aspects of ecosystem components. This workshop will be hosted by the ICM and is supported by the Census of Antarctic Marine Life (CAML). Marine ecologist Julian Gutt is looking to the future: "The minute we have a better understanding of how ecosystems under the ice shelf work we might dare to put forward prognoses how biodiversity on the seafloor changes with respect to ongoing atmospheric warming".

Dr. Angelika Dummermuth | EurekAlert!
Further information:
http://www.awi.de

Further reports about: Antarctic Deep-sea Larsen ecosystem

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>