Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Involved in Discovery of Diabetes Fighting Molecule

25.01.2007
Bioengineering Professor Jiayu Liao is part of a team that discovered the molecule which could lead to a diabetes and obesity pill.

University of California, Riverside Assistant Professor of Bioengineering, Jiayu Liao played a pivotal role in the discovery of a small molecule that has been shown to control diabetes in mice and may pave the way to the development of easier treatment for adult-onset diabetes.

This discovery was a collaboration between Liao at UC Riverside's Bourns College of Engineering and a team in the National Center for Drug Screening, Shanghai, which is part of the Chinese Academy of Science.

This key molecule, identified as Boc5, can stimulate insulin function in response to high levels of glucose as well as reduce body weight by 20 percent. The discovery of this molecule that stimulates the production of the intestinal hormone glucagon-like peptide1 (GLP1), which metabolizes glucose, has been an extremely difficult goal for researchers in both academics and the pharmaceutical industry.

... more about:
»Diabetes »Insulin »Liao

Boc5 is the first small molecule activator for Class B GPCRs, which regulate hormones in many human physiological processes and are major targets for pharmaceutical companies. This discovery opened new revenue possibilities to support future research into small molecule interaction with Class B GPCRs in the future.

In the study, Liao and his colleagues were looking for ways to sensitize sugar-metabolizing insulin by stimulating production of GLP1. Synthetic versions of this peptide have proven effective but of short duration so it had been abandoned by drug researchers.

However, after Liao and his colleagues screened a library of more than 48,000 natural and synthetic compounds, they identified a molecule, Boc5, which mimics glucagon-like peptide1 in the blood leading to increases in insulin secretion in laboratory cultured rat pancreatic cells when exposed to high glucose levels. The molecule also worked when administered by injection and orally in experiments with laboratory mice.

Thus Boc5 behaved as full GLP1 mimic, both in the test tube and in the laboratory mice, the researchers reported in an article that appeared in the Jan. 16 edition of the Proceedings of the National Academies of Science titled “A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice.”

The fact that the molecule also lowered appetite and promoted weight loss in mice, holds out the promise it may fuel more exploration of orally available insulin sensitizing drugs that can be used to control diabetes and obesity, the article’s authors wrote.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Diabetes Insulin Liao

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>