Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen interferes with immune surveillance in breast cancer

25.01.2007
Estrogen is known to enhance the growth and migration of breast cancer cells. Now researchers at the University of Illinois at Urbana-Champaign have found that estrogen also can shield breast cancer cells from immune cells.

In a study published online this week in Oncogene, the researchers report that estrogen induces the expression of an inhibitor that blocks immune cells’ ability to kill tumor cells. This is the first study to identify estrogen’s role in shielding breast cancer cells from the action of immune cells.

The researchers analyzed estrogen’s role in the cascade of events that occurs when immune cells, called natural killer cells, encounter a tumor cell. Under normal conditions, natural killer cells release granules that contain enzymes, called granzymes, which enter and kill the tumor cell.

The research team found that when estrogen binds to an estrogen receptor the complex promotes production of a granzyme inhibitor, proteinase inhibitor 9 (PI-9). The inhibitor binds the granzyme, preventing it from initiating the molecular cascade that kills tumor cells.

“It wasn’t known that estrogen could do this in breast cancer cells,” said principal investigator David J. Shapiro, a professor of biochemistry in the School of Molecular and Cellular Biology. “The amounts of estrogen required to do this are quite small.”

U. of I. graduate student Xinguo Jiang also found that when breast cancer cells that contain very high levels of estrogen receptor protein are exposed to low levels of estrogen, they produce large quantities of the granzyme inhibitor and become highly resistant to immune attack.

The researchers were able to show that estrogen’s effect on PI-9 production was the sole mechanism by which estrogen interfered with the natural killer cells’ ability to kill off breast cancer cells. They did so by blocking PI-9 production in the breast cancer cells exposed to estrogen. When these breast cancer cells were targeted by natural killer cells, they were efficiently killed off, even when significant levels of estrogen and estrogen receptor were present.

Estrogens are known to cause only a few types of cancers, Shapiro said. PI-9 also has been implicated in other cancers. High levels of PI-9 in some lymphomas, for example, are associated with poor prognoses.

This study demonstrates how basic research can have important and unanticipated implications for understanding diseases such as breast cancer, Shapiro said. The finding that estrogens stimulate PI-9 production could eventually help drug designers develop new tests – and targets – for breast cancer therapy.

The research team included collaborators from the University of Wisconsin at Madison.

Editor’s note: To reach David J. Shapiro, call 217-333-1788; e-mail: djshapir@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Estrogen Granzyme Inhibitor PI-9 Shapiro breast cancer natural killer cells

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>