Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dopamine brain target discovered

24.01.2007
Potential breakthrough for schizophrenia treatment

A team of Canadian researchers, lead by Dr. Susan George and Dr. Brian O'Dowd at the Centre for Addiction and Mental health (CAMH), discovered a distinct dopamine signalling complex in the brain. Composed of two different types of dopamine receptors, this novel target may have a significant role in understanding and treating schizophrenia.

Published in the Proceedings of the National Academy of Sciences USA (Rashid et al., 2007), this important discovery demonstrates the existence of a Gq/11-coupled signalling unit that triggers a calcium signal, which is turned on by stimulating D1 and D2 dopamine receptors. Unlike other dopamine receptors, this novel unit will only create brain signals when both receptors are stimulated at the same time.

Using animal models. Drs. George and O'Dowd and their team identified this complex by its unique reaction to dopamine or specific drug triggers. Strikingly, stimulating this target with dopamine or specific drugs triggered a rise in calcium in the brain. As calcium has a profound effect on almost all brain function, this rise in calcium causes a cascade of events in the brain. This is the first time that a direct connection between dopamine and calcium signals has been reported.

... more about:
»Calcium »Target »dopamine »schizophrenia

"This distinct unit provides a novel signalling pathway through which dopamine can impact the function of brain cells", said Dr. George. "This is significant because signalling through calcium release is a major mechanism regulating many important functions in the brain and we have provided the first direct mechanism by which dopamine can activate a calcium signal."

This data has significant implications for schizophrenia. Research tells us that people with schizophrenia may have disordered calcium signals, and the major treatments for this disease target the dopamine system. Drs. George and O'Dowd state, "our data links these two pieces of evidence, creating better understanding of the disease and opening the door for a new generation of highly specific drugs that may help alleviate the devastating symptoms of schizophrenia."

Michael Torres | EurekAlert!
Further information:
http://www.camh.net

Further reports about: Calcium Target dopamine schizophrenia

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>