Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dopamine brain target discovered

24.01.2007
Potential breakthrough for schizophrenia treatment

A team of Canadian researchers, lead by Dr. Susan George and Dr. Brian O'Dowd at the Centre for Addiction and Mental health (CAMH), discovered a distinct dopamine signalling complex in the brain. Composed of two different types of dopamine receptors, this novel target may have a significant role in understanding and treating schizophrenia.

Published in the Proceedings of the National Academy of Sciences USA (Rashid et al., 2007), this important discovery demonstrates the existence of a Gq/11-coupled signalling unit that triggers a calcium signal, which is turned on by stimulating D1 and D2 dopamine receptors. Unlike other dopamine receptors, this novel unit will only create brain signals when both receptors are stimulated at the same time.

Using animal models. Drs. George and O'Dowd and their team identified this complex by its unique reaction to dopamine or specific drug triggers. Strikingly, stimulating this target with dopamine or specific drugs triggered a rise in calcium in the brain. As calcium has a profound effect on almost all brain function, this rise in calcium causes a cascade of events in the brain. This is the first time that a direct connection between dopamine and calcium signals has been reported.

... more about:
»Calcium »Target »dopamine »schizophrenia

"This distinct unit provides a novel signalling pathway through which dopamine can impact the function of brain cells", said Dr. George. "This is significant because signalling through calcium release is a major mechanism regulating many important functions in the brain and we have provided the first direct mechanism by which dopamine can activate a calcium signal."

This data has significant implications for schizophrenia. Research tells us that people with schizophrenia may have disordered calcium signals, and the major treatments for this disease target the dopamine system. Drs. George and O'Dowd state, "our data links these two pieces of evidence, creating better understanding of the disease and opening the door for a new generation of highly specific drugs that may help alleviate the devastating symptoms of schizophrenia."

Michael Torres | EurekAlert!
Further information:
http://www.camh.net

Further reports about: Calcium Target dopamine schizophrenia

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>