Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test predicts blood cancer's sensitivity to experimental cancer drug

24.01.2007
Method identifies cancer cells that are 'primed' to die

A test developed by Dana-Farber Cancer Institute scientists is the first to identify which malignant blood cells are highly vulnerable to a promising type of experimental drugs that unleash pent-up "cell suicide" factors to destroy the cancer.

The researchers demonstrated that chronic lymphocytic leukemia, CLL, which is diagnosed in 10,000 Americans each year, is an easy mark for the new drug because the cancerous cells are strongly dependent on a particular survival molecule, Bcl-2, that keeps the self-destruct signals at bay. They showed that the investigational drug neutralizes the Bcl-2 action, unleashing molecules that trigger suicide in the cancer cells, a process known as programmed cell death or apoptosis.

The research in the laboratory of Anthony Letai, MD, PhD, of Dana-Farber, is described in the January issue of The Journal of Clinical Investigation. The lead author is Victoria Del Gaizo Moore, PhD, a member of the Letai group.

... more about:
»Bcl-2 »CLL »Letai »Molecule

Letai was a colleague of the late Stanley J. Korsmeyer, MD, of Dana-Farber, who discovered the key role in cancer played by anti-apoptosis molecules such as Bcl-2, which promote the survival of cells that are damaged or abnormal despite the body's efforts to eliminate them through apoptosis.

Inspired by this pioneering research, drug companies have begun testing novel Bcl-2 inhibiting drugs designed to restart the natural death processes thwarted by the survival molecule.

Letai said that his group has tested Abbott's investigational compound ABT-737 against cultured CLL cells with striking results. "We've treated CLL samples from several dozen patients, and each has responded to a very low concentration of the drug," said Letai. "We find it particularly interesting that the cells died within four hours."

Cells from CLL, a currently incurable disease, are vulnerable to this dramatic reversal of fortune because they are "primed for death;" they are surviving only because Bcl-2 proteins are blocking powerful cell-death molecular signals by holding them hostage. Primed cells, Letai explained, are like a car with a revved-up engine on the edge of a cliff, restrained only by its emergency brake; if the brake was released, the car would plunge over the cliff.

Drugs such as ABT-737, in effect, release the brake. The drug molecules liberate the pro-death signaling molecules from their Bcl-2 captors. These pro-apoptosis molecules -- a key one is called BIM -- then trigger a chain of events that cause the cell's power plants, or mitochondria, to rupture and spill out chemicals that cause the cell to die and be tagged for disposal. This class of drugs is expected to be relatively non-toxic to most normal cells, which are much less dependent on Bcl-2 function than are cancer cells to stay alive.

"It's essential to figure out which cancers are going to respond to the drug by identifying the cells that are dependent on Bcl-2 for survival," said Letai, who is also an assistant professor of medicine at Harvard Medical School. "Up to now there hasn't been a way to do this."

In developing the test, the Letai team first isolated mitochondria from cancer cells; then they exposed them to protein fragments – peptides – that were known to interact with survival molecules like Bcl-2. "If they interact, then the cell is primed to die, and the test will identify which of the survival molecules is keeping the cells alive," he added. "Then you know that to kill the cell, you have to target Bcl-2."

The researchers have dubbed the test "BH3 profiling" because the array of protein fragments are known as "BH3 domains." Letai said work is under way to make the laboratory profiling operation more automated, looking toward a time when it could be used on a routine basis to assess the vulnerability of patients' cancers to compounds that antagonize BCL-2 or related anti-death proteins.

"This is a totally new class of drugs and has the potential to be a major addition to how we treat cancer," he said.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.dana-farber.org

Further reports about: Bcl-2 CLL Letai Molecule

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>