Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human circadian clocks couple to local sun time

24.01.2007
By assessing the daily activity patterns of thousands of individuals living in different geographical locations, researchers have found evidence that the human circadian clock becomes coupled to so-called local sun time despite the fact that people live and work according to a common "social time" that is determined by time zones.

The work also indicated that city dwellers appear to experience a relatively decreased influence of local sun time relative to those living in more sparsely populated areas.

The findings appear in the January 23rd issue of Current Biology and are reported by Till Roenneberg of Ludwig-Maximilians-Universität, Germany; C. Jairaj Kumar, of Kasturba Medical College, India; and Martha Merrow, of the University of Groningen, in The Netherlands.

Because our watches and clocks are set according to time zones, which are constant over multiple longitudes, rather than according to local sun time, which continuously changes across longitudes, there is often a discrepancy between the natural-light cues one receives as a result of local sun time and the "social" cues one receives as a result of clock time. The extent of such discrepancies depends on the time of year and one's location within a time zone, but can be substantial: In some cities, midnight (according to clock time) can fall well beyond an hour away from "mid-dark." The relative influences of these two types of cues on circadian rhythms are not fully understood by scientists, and in the new work, researchers sought to address this issue by comparing the circadian behaviors of people experiencing these influences to different extents in their daily lives.

... more about:
»Influence »Zone »chronotype »circadian

The measure used to assess patterns of daily activity is the so-called chronotype, which is determined by answers to questionnaires that assess patterns of habitual activity and rest during work days and free time.

In the present study, the authors compared the chronotypes of over 21,000 individuals living in different geographical locations across Germany. Individuals were compared according to the town size in which they lived: The first group included those in areas with a population size of 300,000 or less, while other groups corresponded to individuals living in towns and cities of larger sizes.

The researchers found that within the first group--individuals in more lightly populated regions--chronotypes were tightly coupled to sun time, while within groups corresponding to more densely populated towns and cities, chronotypes showed a progressively weaker coupling to sun time.

City dwelling potentially impacts the influence of sunlight as a zeitgeber because urban dwellers are typically exposed to less natural light than individuals inhabiting less densely populated areas. The authors propose that the gradual uncoupling of the circadian clock of city dwellers from local sun time may reflect the relative strength of natural-light and social cues in influencing activity patterns. When natural-light cues are more abundant--as seems to be the case in more sparsely populated areas--human circadian rhythm entrains to local sun time.

Past work has indicated that as influences on the circadian clock--known as "zeitgebers"--become weaker, chronotypes tend to become later--that is, daily activity is shifted later in the day. And indeed, the present study found that chronotypes became later with increasing population size.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Influence Zone chronotype circadian

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>