Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human circadian clocks couple to local sun time

24.01.2007
By assessing the daily activity patterns of thousands of individuals living in different geographical locations, researchers have found evidence that the human circadian clock becomes coupled to so-called local sun time despite the fact that people live and work according to a common "social time" that is determined by time zones.

The work also indicated that city dwellers appear to experience a relatively decreased influence of local sun time relative to those living in more sparsely populated areas.

The findings appear in the January 23rd issue of Current Biology and are reported by Till Roenneberg of Ludwig-Maximilians-Universität, Germany; C. Jairaj Kumar, of Kasturba Medical College, India; and Martha Merrow, of the University of Groningen, in The Netherlands.

Because our watches and clocks are set according to time zones, which are constant over multiple longitudes, rather than according to local sun time, which continuously changes across longitudes, there is often a discrepancy between the natural-light cues one receives as a result of local sun time and the "social" cues one receives as a result of clock time. The extent of such discrepancies depends on the time of year and one's location within a time zone, but can be substantial: In some cities, midnight (according to clock time) can fall well beyond an hour away from "mid-dark." The relative influences of these two types of cues on circadian rhythms are not fully understood by scientists, and in the new work, researchers sought to address this issue by comparing the circadian behaviors of people experiencing these influences to different extents in their daily lives.

... more about:
»Influence »Zone »chronotype »circadian

The measure used to assess patterns of daily activity is the so-called chronotype, which is determined by answers to questionnaires that assess patterns of habitual activity and rest during work days and free time.

In the present study, the authors compared the chronotypes of over 21,000 individuals living in different geographical locations across Germany. Individuals were compared according to the town size in which they lived: The first group included those in areas with a population size of 300,000 or less, while other groups corresponded to individuals living in towns and cities of larger sizes.

The researchers found that within the first group--individuals in more lightly populated regions--chronotypes were tightly coupled to sun time, while within groups corresponding to more densely populated towns and cities, chronotypes showed a progressively weaker coupling to sun time.

City dwelling potentially impacts the influence of sunlight as a zeitgeber because urban dwellers are typically exposed to less natural light than individuals inhabiting less densely populated areas. The authors propose that the gradual uncoupling of the circadian clock of city dwellers from local sun time may reflect the relative strength of natural-light and social cues in influencing activity patterns. When natural-light cues are more abundant--as seems to be the case in more sparsely populated areas--human circadian rhythm entrains to local sun time.

Past work has indicated that as influences on the circadian clock--known as "zeitgebers"--become weaker, chronotypes tend to become later--that is, daily activity is shifted later in the day. And indeed, the present study found that chronotypes became later with increasing population size.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Influence Zone chronotype circadian

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>