Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Less is more": New diagnostics with nanometer-sized particles

23.01.2007
As part of the EU 6th Framework Programme in the field of genomics and biotechnology for health, a new consortium "FLUOROMAG" coordinated by Dr. Donna Arndt-Jovin at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, will develop new diagnostic tools for use in tumor biology and the detection of very low levels of pandemic viruses.

Precise diagnosis is based on multiple end-points involving several tests with antibodies or DNA probes for particular biomolecules in a tumor or a virus.

Antibodies and DNA are usually labeled with different fluorescent dyes, generally requiring multiple modes of excitation and detection that can render the measurement slow and laborious. Advances in nanotechnology have led to the emergence of new fluorescent materials, semiconductor nanoparticles (NPs) called "quantum dots", which can be excited by a single light source (wavelength) but that according to their size and composition emit in discrete and separated spectral bands.

The "multiplexing" of such probes is thereby greatly simplified. Scientists working in the Molecular Biology Dept. have shown that single quantum dots can be detected on and in living cells.

The project of the consortium has two elements. The first is the development of other classes of still smaller NPs, i.e. with sizes below 10 nm (less than a millionth of a cm): fluorescent noble-metal "nanodots" and magnetic NPs. These materials are superior to conventional fluorophores in that they exhibit extreme photo- and chemical stability. The nanodots should have reduced toxicity and greater target accessibility than quantum dots, yet offer a similar detection sensitivity. They will be derivatized and tested for specific recognition of biomolecules such as tumor markers (for breast cancer) and global viral disease (Hepatitis C and Dengue Fever). Other core-shell "onion-like" NPs developed by the partner in Santiago de Compostela have diverse and strong magnetic properties and will be tested for their application in micro-chip and MRI diagnostics.

In a parallel effort, several of the partners will optimize the design and performance of a new type of high-speed, sensitive, optically sectioning microscope known as the Programmable Array Microscope (PAM), for use in both the basic research and medical communities. The PAM is very versatile in that it implements many imaging modalities and has been under development in the Molecular Biology Dept. for the past 10 years. It has single-NP sensitivity, and is ideally suited for measurements of thick samples such as tissue slices and patterned arrays, important objects for diagnostic tests.

The FLUOROMAG consortium has been awarded € 2.5 million by the European Union for a period of 3 years. The research project leaders of the consortium are: Donna Arndt-Jovin (MPIbpc, Germany), Arturo López-Quintela (Univ. of Santiago de Compostela, Spain); Vinod Subramaniam (Univ. of Twente, The Netherlands); Quentin Hanley (Univ. of Nottingham Trent, UK). Two small businesses (SMEs) are included in the consortium; Nanogap Sub-nm-powder SA, Spain (Tatiana López del Rio) will produce the NPs in large scale and Cairn Research Ltd., UK (Martin Thomas) will produce and market the newest technical realizations of the PAM.

For further information, contact

Prof. Dr. Donna Arndt-Jovin, Max Planck Institute for Biophysical Chemistry, Dept. Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany, Phone: +49 (0) 551 201 -1393, Fax: -1467, E-mail: djovin@gwdg.de

Dr. Joachim Bormann, Max Planck Institute for Biophysical Chemistry, EU Liaison Office, Am Fassberg 11, 37077 Göttingen, Phone: +49 (0) 551 201 -1076, Fax: -1175, E-mail: j.bormann@gwdg.de

Dr. Christoph Nothdurft | idw
Further information:
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_01/index_en.html

Further reports about: Arndt-Jovin Biophysical CONSORTIUM Max Planck Institute NPS PAM Quantum quantum dots

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>