Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Less is more": New diagnostics with nanometer-sized particles

23.01.2007
As part of the EU 6th Framework Programme in the field of genomics and biotechnology for health, a new consortium "FLUOROMAG" coordinated by Dr. Donna Arndt-Jovin at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, will develop new diagnostic tools for use in tumor biology and the detection of very low levels of pandemic viruses.

Precise diagnosis is based on multiple end-points involving several tests with antibodies or DNA probes for particular biomolecules in a tumor or a virus.

Antibodies and DNA are usually labeled with different fluorescent dyes, generally requiring multiple modes of excitation and detection that can render the measurement slow and laborious. Advances in nanotechnology have led to the emergence of new fluorescent materials, semiconductor nanoparticles (NPs) called "quantum dots", which can be excited by a single light source (wavelength) but that according to their size and composition emit in discrete and separated spectral bands.

The "multiplexing" of such probes is thereby greatly simplified. Scientists working in the Molecular Biology Dept. have shown that single quantum dots can be detected on and in living cells.

The project of the consortium has two elements. The first is the development of other classes of still smaller NPs, i.e. with sizes below 10 nm (less than a millionth of a cm): fluorescent noble-metal "nanodots" and magnetic NPs. These materials are superior to conventional fluorophores in that they exhibit extreme photo- and chemical stability. The nanodots should have reduced toxicity and greater target accessibility than quantum dots, yet offer a similar detection sensitivity. They will be derivatized and tested for specific recognition of biomolecules such as tumor markers (for breast cancer) and global viral disease (Hepatitis C and Dengue Fever). Other core-shell "onion-like" NPs developed by the partner in Santiago de Compostela have diverse and strong magnetic properties and will be tested for their application in micro-chip and MRI diagnostics.

In a parallel effort, several of the partners will optimize the design and performance of a new type of high-speed, sensitive, optically sectioning microscope known as the Programmable Array Microscope (PAM), for use in both the basic research and medical communities. The PAM is very versatile in that it implements many imaging modalities and has been under development in the Molecular Biology Dept. for the past 10 years. It has single-NP sensitivity, and is ideally suited for measurements of thick samples such as tissue slices and patterned arrays, important objects for diagnostic tests.

The FLUOROMAG consortium has been awarded € 2.5 million by the European Union for a period of 3 years. The research project leaders of the consortium are: Donna Arndt-Jovin (MPIbpc, Germany), Arturo López-Quintela (Univ. of Santiago de Compostela, Spain); Vinod Subramaniam (Univ. of Twente, The Netherlands); Quentin Hanley (Univ. of Nottingham Trent, UK). Two small businesses (SMEs) are included in the consortium; Nanogap Sub-nm-powder SA, Spain (Tatiana López del Rio) will produce the NPs in large scale and Cairn Research Ltd., UK (Martin Thomas) will produce and market the newest technical realizations of the PAM.

For further information, contact

Prof. Dr. Donna Arndt-Jovin, Max Planck Institute for Biophysical Chemistry, Dept. Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany, Phone: +49 (0) 551 201 -1393, Fax: -1467, E-mail: djovin@gwdg.de

Dr. Joachim Bormann, Max Planck Institute for Biophysical Chemistry, EU Liaison Office, Am Fassberg 11, 37077 Göttingen, Phone: +49 (0) 551 201 -1076, Fax: -1175, E-mail: j.bormann@gwdg.de

Dr. Christoph Nothdurft | idw
Further information:
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_01/index_en.html

Further reports about: Arndt-Jovin Biophysical CONSORTIUM Max Planck Institute NPS PAM Quantum quantum dots

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>