Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Speechless' and 'Mute' help break the silence of the leaves

23.01.2007
Researchers have discovered two genes that guide land plants to develop microscopic pores that they can open and close as if each pore was a tiny mouth.

Plants wouldn't have been able to move from water to land 400 million years ago if they hadn't evolved this ability, which protects them from losing too much moisture.

The leaves and stems of land plants are dotted with the "tiny mouths," called stomata. When open, stomata allow the plant to take in carbon dioxide gas needed for photosynthesis and allow moisture to evaporate, pulling water from the roots into the plant. But when too much moisture is being lost, the two cells around the stomatal pore close it completely.

Without the genes guiding stomatal development, plants won't develop any mouthlike pores, hence the names Speechless and Mute for the newly discovered genes, according to Keiko Torii, a University of Washington associate professor of biology.

... more about:
»Mute »Speechless »stomata

Two separate papers on the genes, one by Torii's UW group and the other by Stanford University researchers, have been published online by Nature, and are scheduled to appear in the print publication Feb. 1. Each group describes independently finding the gene that came to be called Speechless and its role in initiating the process that leads to stomata.

In addition, Torii's UW group published findings in its Nature article about another gene, one they named Mute, that triggers the key middle step that decides when a cell will fully become a stomata. Earlier this year the Stanford group published findings about the gene that controls the final step in stomata development, called Fama.

"In the last few months, we've gone from knowing surprisingly little about the genes involved to knowing all three major factors – Speechless, Mute and Fama," says Lynn Pillitteri, a research associate in biology and lead author of the Nature paper.

That the three are so closely related will be of interest to biologists studying both plants and animals, she says. Each is a basic protein with a helix-loop-helix domain, a sequence that is quite ancient and controls a vast range of physiological and developmental processes. Speechless, Mute and Fama also have very similar DNA sequences and could have arisen from a single gene that replicated and evolved, giving plants additional genes with slightly different characteristics.

Having two or three genes with similar characteristics would give plants what Torii terms "the freedom to play, to make functions that are the more elaborate stomata in modern plants."

Other biologists have seen something similar in animals. The ability to differentiate cells that become muscles also is controlled by consecutive action of basic helix-loop-helix proteins with DNA closely related to each other.

Molecular conservation of such key regulatory genes between plants and animals – genes that switch on and off cell-type differentiation programs from precursor stem cells – is intriguing and exciting, Torii says.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Mute Speechless stomata

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>