Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Speechless' and 'Mute' help break the silence of the leaves

23.01.2007
Researchers have discovered two genes that guide land plants to develop microscopic pores that they can open and close as if each pore was a tiny mouth.

Plants wouldn't have been able to move from water to land 400 million years ago if they hadn't evolved this ability, which protects them from losing too much moisture.

The leaves and stems of land plants are dotted with the "tiny mouths," called stomata. When open, stomata allow the plant to take in carbon dioxide gas needed for photosynthesis and allow moisture to evaporate, pulling water from the roots into the plant. But when too much moisture is being lost, the two cells around the stomatal pore close it completely.

Without the genes guiding stomatal development, plants won't develop any mouthlike pores, hence the names Speechless and Mute for the newly discovered genes, according to Keiko Torii, a University of Washington associate professor of biology.

... more about:
»Mute »Speechless »stomata

Two separate papers on the genes, one by Torii's UW group and the other by Stanford University researchers, have been published online by Nature, and are scheduled to appear in the print publication Feb. 1. Each group describes independently finding the gene that came to be called Speechless and its role in initiating the process that leads to stomata.

In addition, Torii's UW group published findings in its Nature article about another gene, one they named Mute, that triggers the key middle step that decides when a cell will fully become a stomata. Earlier this year the Stanford group published findings about the gene that controls the final step in stomata development, called Fama.

"In the last few months, we've gone from knowing surprisingly little about the genes involved to knowing all three major factors – Speechless, Mute and Fama," says Lynn Pillitteri, a research associate in biology and lead author of the Nature paper.

That the three are so closely related will be of interest to biologists studying both plants and animals, she says. Each is a basic protein with a helix-loop-helix domain, a sequence that is quite ancient and controls a vast range of physiological and developmental processes. Speechless, Mute and Fama also have very similar DNA sequences and could have arisen from a single gene that replicated and evolved, giving plants additional genes with slightly different characteristics.

Having two or three genes with similar characteristics would give plants what Torii terms "the freedom to play, to make functions that are the more elaborate stomata in modern plants."

Other biologists have seen something similar in animals. The ability to differentiate cells that become muscles also is controlled by consecutive action of basic helix-loop-helix proteins with DNA closely related to each other.

Molecular conservation of such key regulatory genes between plants and animals – genes that switch on and off cell-type differentiation programs from precursor stem cells – is intriguing and exciting, Torii says.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Mute Speechless stomata

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>