Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells that did not find place in life

22.01.2007
The majority of cells of a multicellular organism have in literal sence to seek their place, and far from all of them succeed in doing that.

The cell being in permanent futile search – is a cancer cell. This hypothesis was set forward by Russian scientists Yuri Vasiliev and I.M. Gelfand in the review article published in the Biochemistry journal (2006, Volume 71, No. 8).

For an organism to originate from cells, it is necessary that cells could find each other. To this end, they undertake searching migrations. As a rule, searching migration has two stages. At the search stage, a group of cells or even not cells per se but their processes move in a random way along acellular spaces of the organism, one might say, they fumble about by touch. Some of them grope after something, and then there comes a stage of choice for them. Migrating cells that have achieved definite places in the organism, stop and start differentiation. Embyronic growth is impossible without searching migration. In particular, when the nervous system is being formed, nerve cells of the spinal cord rudiment release processes (axons) into the body cavity, the processes touch the cavity and within some time they hit on some “target”, for example, muscle rudiments. Then synapse - neuromuscular junction - occurs. Axons from other sections of the brain find rudiments of other organs. Vessel growth can also be considered as peculiar searching reactions, where ends of ramifying capillaries are at first looked for, and then the territory is selected for blood supply. Wound healing begins with searching migration. The choice is as follows: a cell may find its place and make part of an organ or a tissue, or it may not. Unsuccessful search is a commonplace. Thus, when neuromuscular contacts are being formed, only the minority of axons manage to grope the “target”. All other axons and the cells they belong to turn out to be redundant and are subject to extermination - apoptosis.

Malignancy of cancer cells, that is their ability to leave the normal tissue and to spread across the body, is akin to searching migration. However, such migration is considered by the researchers as a pathologic one. Pathologic migration differs radically from the normal one by the fact that it possesses only the first part - wandering- but the choice is absent. Apparently, this pathology occurred as a result of genetic abnormalities in the normal search mechanisms. Malignant cells are constantly wandering in the surrounding tissue, but they do not stop and do not start differentiation. Within the tumors per se, cell displacements are spontaneous and confused. At face value, the cells that did not find their place are subject to destruction, but cancer cells are deprived of the ability for apoptosis, therefore, they survive and reproduce. If the carcinogenesis process has already gone far, cancer cells can leave their native tumor, “wander” rather far from it and form metastases. At earlier stages of carcinogenesis, the cells still preserve some ability for choice, but they pass on to it under the influence of some other factors. Even in the non-malignant tumors, some part of cells is always in the state of search: it reproduces and migrates.

... more about:
»Migration »Organ »choice »rudiment

The researchers emphasize that a cancer cell can be called an eternal finder only as a very rough approximation, and all details of the hypothesis suggested by them require experimental validation.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Migration Organ choice rudiment

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>