Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells that did not find place in life

22.01.2007
The majority of cells of a multicellular organism have in literal sence to seek their place, and far from all of them succeed in doing that.

The cell being in permanent futile search – is a cancer cell. This hypothesis was set forward by Russian scientists Yuri Vasiliev and I.M. Gelfand in the review article published in the Biochemistry journal (2006, Volume 71, No. 8).

For an organism to originate from cells, it is necessary that cells could find each other. To this end, they undertake searching migrations. As a rule, searching migration has two stages. At the search stage, a group of cells or even not cells per se but their processes move in a random way along acellular spaces of the organism, one might say, they fumble about by touch. Some of them grope after something, and then there comes a stage of choice for them. Migrating cells that have achieved definite places in the organism, stop and start differentiation. Embyronic growth is impossible without searching migration. In particular, when the nervous system is being formed, nerve cells of the spinal cord rudiment release processes (axons) into the body cavity, the processes touch the cavity and within some time they hit on some “target”, for example, muscle rudiments. Then synapse - neuromuscular junction - occurs. Axons from other sections of the brain find rudiments of other organs. Vessel growth can also be considered as peculiar searching reactions, where ends of ramifying capillaries are at first looked for, and then the territory is selected for blood supply. Wound healing begins with searching migration. The choice is as follows: a cell may find its place and make part of an organ or a tissue, or it may not. Unsuccessful search is a commonplace. Thus, when neuromuscular contacts are being formed, only the minority of axons manage to grope the “target”. All other axons and the cells they belong to turn out to be redundant and are subject to extermination - apoptosis.

Malignancy of cancer cells, that is their ability to leave the normal tissue and to spread across the body, is akin to searching migration. However, such migration is considered by the researchers as a pathologic one. Pathologic migration differs radically from the normal one by the fact that it possesses only the first part - wandering- but the choice is absent. Apparently, this pathology occurred as a result of genetic abnormalities in the normal search mechanisms. Malignant cells are constantly wandering in the surrounding tissue, but they do not stop and do not start differentiation. Within the tumors per se, cell displacements are spontaneous and confused. At face value, the cells that did not find their place are subject to destruction, but cancer cells are deprived of the ability for apoptosis, therefore, they survive and reproduce. If the carcinogenesis process has already gone far, cancer cells can leave their native tumor, “wander” rather far from it and form metastases. At earlier stages of carcinogenesis, the cells still preserve some ability for choice, but they pass on to it under the influence of some other factors. Even in the non-malignant tumors, some part of cells is always in the state of search: it reproduces and migrates.

... more about:
»Migration »Organ »choice »rudiment

The researchers emphasize that a cancer cell can be called an eternal finder only as a very rough approximation, and all details of the hypothesis suggested by them require experimental validation.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Migration Organ choice rudiment

More articles from Life Sciences:

nachricht Histology in 3D: new staining method enables Nano-CT imaging of tissue samples
22.02.2018 | Technische Universität München

nachricht Researchers invent tiny, light-powered wires to modulate brain's electrical signals
21.02.2018 | University of Chicago

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>