Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells that did not find place in life

22.01.2007
The majority of cells of a multicellular organism have in literal sence to seek their place, and far from all of them succeed in doing that.

The cell being in permanent futile search – is a cancer cell. This hypothesis was set forward by Russian scientists Yuri Vasiliev and I.M. Gelfand in the review article published in the Biochemistry journal (2006, Volume 71, No. 8).

For an organism to originate from cells, it is necessary that cells could find each other. To this end, they undertake searching migrations. As a rule, searching migration has two stages. At the search stage, a group of cells or even not cells per se but their processes move in a random way along acellular spaces of the organism, one might say, they fumble about by touch. Some of them grope after something, and then there comes a stage of choice for them. Migrating cells that have achieved definite places in the organism, stop and start differentiation. Embyronic growth is impossible without searching migration. In particular, when the nervous system is being formed, nerve cells of the spinal cord rudiment release processes (axons) into the body cavity, the processes touch the cavity and within some time they hit on some “target”, for example, muscle rudiments. Then synapse - neuromuscular junction - occurs. Axons from other sections of the brain find rudiments of other organs. Vessel growth can also be considered as peculiar searching reactions, where ends of ramifying capillaries are at first looked for, and then the territory is selected for blood supply. Wound healing begins with searching migration. The choice is as follows: a cell may find its place and make part of an organ or a tissue, or it may not. Unsuccessful search is a commonplace. Thus, when neuromuscular contacts are being formed, only the minority of axons manage to grope the “target”. All other axons and the cells they belong to turn out to be redundant and are subject to extermination - apoptosis.

Malignancy of cancer cells, that is their ability to leave the normal tissue and to spread across the body, is akin to searching migration. However, such migration is considered by the researchers as a pathologic one. Pathologic migration differs radically from the normal one by the fact that it possesses only the first part - wandering- but the choice is absent. Apparently, this pathology occurred as a result of genetic abnormalities in the normal search mechanisms. Malignant cells are constantly wandering in the surrounding tissue, but they do not stop and do not start differentiation. Within the tumors per se, cell displacements are spontaneous and confused. At face value, the cells that did not find their place are subject to destruction, but cancer cells are deprived of the ability for apoptosis, therefore, they survive and reproduce. If the carcinogenesis process has already gone far, cancer cells can leave their native tumor, “wander” rather far from it and form metastases. At earlier stages of carcinogenesis, the cells still preserve some ability for choice, but they pass on to it under the influence of some other factors. Even in the non-malignant tumors, some part of cells is always in the state of search: it reproduces and migrates.

... more about:
»Migration »Organ »choice »rudiment

The researchers emphasize that a cancer cell can be called an eternal finder only as a very rough approximation, and all details of the hypothesis suggested by them require experimental validation.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Migration Organ choice rudiment

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>