Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting one's protein in a bunch -- When quality control fails in cells

18.01.2007
Over time, a relatively minor mistake in protein production at the cellular level may lead to serious neurological diseases.

But exactly how the cell avoids such mistakes has remained unclear until now. Researchers at Ohio State University found the mechanism that prevents such errors, and explain their findings in the Proceedings of the National Academy of Sciences.

“Cells normally make a certain amount of mutant proteins, and use a series of degradation and recycling steps to get rid of them,” said Michael Ibba, the study's lead author and an associate professor of microbiology at Ohio State University.

“But sometimes the cell produces more mutations than it can handle. That buildup can overwhelm the cell's ability to eliminate these mutants.”

Left unchecked, these errors result in the buildup of faulty proteins within the cell. This buildup happens during translation, a process that cells use to make usable proteins. Over time, the researchers believe that the accumulated proteins might cause neurological diseases, such as Alzheimer's and Parkinson's.

Scientists know that cells use many enzymes to carry out translation properly. The enzymes that make the building blocks for translation carefully check for errors before proteins are made. If they find an error, they instruct the cell to destroy these building blocks, which are called aminoacyl-tRNAs. Cells break down these aminoacyl-tRNAs through a process called hydrolysis, in which one compound is split into other compounds in a reaction that uses water.

Ibba and his team work with a special family of enzymes called the aminoacyl-tRNA synthetases. These enzymes select the amino acids inside the cell that are used for producing proteins.

Ibba and his colleagues used a specific synthetase, phenylalanyl-tRNA synthetase, to investigate what happens when the wrong amino acid is selected. They carried out their experiments in a strain of E. coli bacteria cells.

They changed certain components of the translation process and found that the replacements halved hydrolysis, and in some cases reduce hydrolysis by as much as 90 percent. In other experiments, the researchers also slightly modified the protein. Further tests showed that this alteration left the modified enzymes incapable of preventing mistakes during protein production.

“It revealed an essential function for this group of enzymes in hydrolysis,” Ibba said.

In related work, Ibba and other researchers have found that bacteria grow poorly or die when this enzymatic step is missing.

“We knew it was an important process for the cell, but until this study, we didn't know exactly why it was so important,” Ibba said. “Other researchers have actually disrupted this process in mice, and found that it leads to neurodegenerative diseases resembling Alzheimer's and Parkinson's.”

Ibba and his team face more challenges. They want to know precisely how cells correct for these mistakes, and knowing this may give them insight to neurological diseases.

“The key to efficient cell growth is to limit the level of mistakes to a tolerable amount,” Ibba said. “In spite of all its checks and balances, a cell isn't perfect. Even though textbooks tell you that gene expression is flawless, this just isn't possible in real life.

“Ultimately – and it's a long way off – we hope to develop a way to therapeutically correct for these errors,” he said. “If we understand how these diseases start, and it relates to mistakes in the mechanism we studied, then there may be a means to try and correct these mistakes.”

Ibba conducted the study with Ohio State colleagues Jiqiang Ling, a graduate research associate in the Ohio State Biochemistry Program, and Hervé Roy, a postdoctoral researcher in microbiology.

This study was supported by a grant from the National Science Foundation.

Michael Ibba | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Error Protein Translation aminoacyl-tRNA hydrolysis

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>