Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new method for fighting leukemia

18.01.2007
Researchers at Virginia Commonwealth University's Massey Cancer Center have created a new method to improve the antileukemic activity of a novel agent that triggers programmed cell death, a development that could lead to more effective strategies for fighting leukemia and other malignancies.

The cell death process, or apoptosis, is characteristically impaired in cancer cells. The process is regulated by a large family of proteins that either promotes or inhibits cell death. Recently, considerable attention has focused on the development of agents that inhibit the actions of antiapoptotic members of this family.

One such agent, known as ABT-737, potently blocks the pro-survival effects of two proteins, Bcl-2 and Bcl-xL, according to Steven Grant, M.D., Massey's associate director for translational research and co-leader of the cancer center's cancer cell biology program. Grant is senior author of the study, which is published in the Jan. 15 issue of the journal Cancer Research.

In laboratory experiments, ABT-737 has been shown to be very effective in killing tumor cells. However, this agent is unable to block the actions of another anti-apoptotic family member, Mcl-1, and it has been found that increased expression of Mcl-1 in tumor cells significantly reduces the anti-tumor effectiveness of ABT-737.

... more about:
»ABT-737 »Mcl-1 »leukemia

Grant and colleagues demonstrated that interventions that reduce levels of Mcl-1 in leukemia cells dramatically increase the effectiveness of ABT-737. Specifically, they employed an agent called roscovitine to block the synthesis of Mcl-1 at the RNA level. Grant said that because Mcl-1 is a very short-lived protein, disrupting its synthesis rapidly lowers Mcl-1 levels.

Grant's team found that the simultaneous reduction in Mcl-1 expression in conjunction with disruption of the anti-apoptotic actions of Bcl-2 and Bcl-xL by ABT-737 resulted in the marked activation of an important pro-apoptotic protein known as Bak. Grant said that when Bak is freed from its constraints by these actions, it cooperates with other pro-death proteins to induce mitochondrial damage, culminating in the dramatic onset of apoptosis.

"Our findings are significant because we were able to employ pharmacologic agents to recapitulate the death process that occurs in normal cells, and which is impaired in their neoplastic counterparts," said Grant. "These findings could also have significant translational implications for the treatment of leukemia and potentially other malignancies."

"For example, analogs of roscovitine have recently entered the clinic, and a number of other agents capable of reducing Mcl-1 levels in tumor cells are currently being developed," he said.

Based upon the findings of Grant's group, regimens combining such agents with Bcl-2 antagonists like ABT-737 could represent a particularly effective treatment strategy in leukemia and various other malignancies.

This work was supported by grants from the National Institutes of Health, the Leukemia and Lymphoma Society of America, and the Department of Defense.

Grant, a professor of medicine and the Shirley Carter and Sture Gordon Olsson Professor of oncology, worked with a team that included: Shuang Chen, Ph.D., Yun Dai, Ph.D., and Hisashi Harada, M.D., Ph.D., all in the VCU Department of Medicine; and Paul Dent, Ph.D., a professor in the VCU Department of Biochemistry.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu
http://www.massey.vcu.edu

Further reports about: ABT-737 Mcl-1 leukemia

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>