Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There goes the neighborhood: Vascular niche nurtures brain tumor stem cells

18.01.2007
Self-renewing cancer stem cells (CSCs) comprise only a tiny fraction of most brain tumors, but eliminating them is likely to have a profound impact on the ability of a tumor to survive and grow. However, CSCs might resist traditional therapies that target the great bulk of the cells in cancers.

Now, new research published in the January 2007 issue of the journal Cancer Cell, published by Cell Press, reveals that small blood vessels associated with brain tumors orchestrate a distinct microenvironment that is critical for maintaining CSCs. Importantly, antiangiogenic drugs that disrupt this microenvironment reduce the CSC population and arrest tumor growth.

Dr. Richard J. Gilbertson and colleagues from the St. Jude Children's Research Hospital established that CSCs in human brain tumors are associated with blood vessels and that vascular cells physically interact with and maintain brain CSCs in culture. A similar interaction was not observed for the bulk of non-CSC tumor cells. To examine whether the vessel-derived factors promote maintenance of CSCs and tumor propagation in vivo, the researchers transplanted human brain tumors into mice with or without vascular cells. The mice with extra vascular cells exhibited an increase in CSCs as well as enhanced initiation and proliferation of tumors. The authors also found that when antiangiogenic therapies were used to diminish tumor blood vessels, CSCs were reduced and tumor growth was arrested, further supporting the importance of the vascular microenvironment to CSCs.

"Our data identify a possible role for niche microenvironments in the maintenance of CSCs and identify a mechanism by which antiangiogenic drugs inhibit brain tumor growth," concludes Dr. Gilbertson. "If the notion that niches protect CSCs proves correct, then targeting these microenvironments could prove highly effective treatments of cancer." Further research and clinical trials are needed to investigate this important new mechanism associated with antiangiogenic cancer therapies. It seems likely that effective cancer treatments must target both the bulk of rapidly proliferating tumor cells and the smaller population of self-renewing CSCs.

Erin Doonan | EurekAlert!
Further information:
http://www.cancercell.org

Further reports about: CSC antiangiogenic microenvironment niche vascular vascular cells

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>