Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There goes the neighborhood: Vascular niche nurtures brain tumor stem cells

18.01.2007
Self-renewing cancer stem cells (CSCs) comprise only a tiny fraction of most brain tumors, but eliminating them is likely to have a profound impact on the ability of a tumor to survive and grow. However, CSCs might resist traditional therapies that target the great bulk of the cells in cancers.

Now, new research published in the January 2007 issue of the journal Cancer Cell, published by Cell Press, reveals that small blood vessels associated with brain tumors orchestrate a distinct microenvironment that is critical for maintaining CSCs. Importantly, antiangiogenic drugs that disrupt this microenvironment reduce the CSC population and arrest tumor growth.

Dr. Richard J. Gilbertson and colleagues from the St. Jude Children's Research Hospital established that CSCs in human brain tumors are associated with blood vessels and that vascular cells physically interact with and maintain brain CSCs in culture. A similar interaction was not observed for the bulk of non-CSC tumor cells. To examine whether the vessel-derived factors promote maintenance of CSCs and tumor propagation in vivo, the researchers transplanted human brain tumors into mice with or without vascular cells. The mice with extra vascular cells exhibited an increase in CSCs as well as enhanced initiation and proliferation of tumors. The authors also found that when antiangiogenic therapies were used to diminish tumor blood vessels, CSCs were reduced and tumor growth was arrested, further supporting the importance of the vascular microenvironment to CSCs.

"Our data identify a possible role for niche microenvironments in the maintenance of CSCs and identify a mechanism by which antiangiogenic drugs inhibit brain tumor growth," concludes Dr. Gilbertson. "If the notion that niches protect CSCs proves correct, then targeting these microenvironments could prove highly effective treatments of cancer." Further research and clinical trials are needed to investigate this important new mechanism associated with antiangiogenic cancer therapies. It seems likely that effective cancer treatments must target both the bulk of rapidly proliferating tumor cells and the smaller population of self-renewing CSCs.

Erin Doonan | EurekAlert!
Further information:
http://www.cancercell.org

Further reports about: CSC antiangiogenic microenvironment niche vascular vascular cells

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>