Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cells in lung produce histamine seen in allergies

17.01.2007
First evidence that neutrophils, or any cell other than mast cells, produce histamine in significant quantities in mouse study

In a surprise finding, scientists have discovered that histamine, the inflammatory compound released during allergic reactions that causes runny nose, watery eyes, and wheezing, can be produced in large amounts in the lung by neutrophils, the white blood cells that are the major component of pus.

Pus, a fluid found in infected tissue, is produced as a result of inflammation.

The study in mice is the first to show that lung neutrophils can produce histamine in significant quantities, according to principal investigator George Caughey, MD, chief of pulmonary/critical care medicine at the San Francisco VA Medical Center.

"Previously it was thought that the primary sources of lung histamine, in health as well as disease, was mast cells, which are classically associated with allergy," notes Caughey, who is also a professor of medicine at the University of California, San Francisco.

Caughey says the result could mean that histamine acts as a link between airway infections and asthma and bronchitis, which are associated with allergy. "In both, we observe inflammation –– swelling, blood vessel leak, and muscle contraction that narrows the airway."

The study appears in the January 2007 issue of the Journal of Experimental Medicine.

Caughey was investigating the well-known fact that upper respiratory infections often trigger acute asthma attacks. "We hypothesized that an infection in the airway would release histamine from mast cells, and that would be one of the reasons," he explains.

To test the hypothesis, Caughey and his team exposed two different populations of mice to mycoplasma, a common respiratory infection in rodents and humans. One population had a genetic abnormality that causes a total lack of mast cells; the other population was made up of normal, wild-type mice. Both populations of infected mice developed pneumonia.

"We thought the mice without mast cells would do better than the wild-type mice, because the infection wouldn't be provoking mast cells to release histamine," recalls Caughey. "In fact, they did much worse. Even though there were no mast cells, histamine levels rose up to 50 times normal."

The reason was straightforward, Caughey says. Neutrophil numbers increased in response to infection, and neutrophils in turn produced histamine. "It's a direct effect of the mycoplasma bacteria on neutrophils. They induce neutrophils to produce the enzyme that produces histamine."

Individual neutrophils produce much less histamine than individual mast cells, says Caughey, but "because pus contains millions if not billions of neutrophils, the overall amount they make is very considerable."

The neutrophil-histamine effect was similar in the wild-type mice, reports Caughey: "Histamine levels from neutrophils blew right past the histamine levels contributed by mast cells."

The wild-type mice suffered less severe infections overall because "as a number of recent studies, including ours, have shown, mast cells actually play a role in protecting against bacteria," Caughey explains. "For example, a mouse without mast cells with the equivalent of a ruptured appendix will die of the resulting infection, while a mouse with mast cells can survive."

When the infected mice without mast cells were given antihistamines, the level of histamine, and therefore the severity of the pneumonia, dropped in proportion to the amount of antihistamine given.

"This is a study in mice, so we cannot freely extrapolate the results to human beings," cautions Caughey. "Nonetheless, antihistamines may deserve more of a look as therapeutic options in lung and airway infection."

He says the study also has implications for other types of airway infection "in which there are a lot of white blood cells –– cystic fibrosis, for example, which can be associated with asthma-like airway contraction."

The next steps for Caughey and his research team are to investigate "how general this result might be. Does only one type of bacteria cause the effect, or do others, also? Is it limited to rodents, or does it carry forward to humans? And if it does, is the amount of histamine produced by neutrophils enough to make a clinical difference?"

Steve Tokar | EurekAlert!
Further information:
http://www.ncire.org
http://www.ucsf.edu/

Further reports about: Caughey antihistamine histamine mast cells neutrophils

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>