Dual enzymatic activity of RECQ1 explained by different quaternary structures

This reaction is driven by proteins called helicases, which make use of ATP as fuel to unwind the DNA duplex. The RecQ family of helicases helps maintain genome stability. Recent studies have shown that RecQ helicases, in addition to promoting DNA unwinding, can also catalyze the opposite reaction: the pairing of the partially unwound DNA duplexes.

The mechanisms underlying the regulation of this dual enzymatic activity are unknown, however. In a new study published online in the open access journal PLoS Biology, Laura Muzzolini, Alessandro Vindigni, and colleagues describe two structural forms of the human RECQ1 helicase, a large oligomeric complex composed of five or six subunits and a smaller form consistent with only one or two molecules.

An initial view of the three-dimensional structure of the larger complex is provided, including a demonstration that this state is associated with DNA strand annealing, whereas the smaller form carries out DNA unwinding. The functional switch from strand-annealing to DNA unwinding is controlled by ATP binding, which promotes the dissociation of the larger, higher-order complexes. By providing insight into the mechanisms regulating RecQ helicase activity, this study opens a new window into a fundamental aspect of DNA metabolism.

Citation: Muzzolini L, Beuron F, Patwa rdhan A, Popuri V, Cui S, et al. (2007) Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity. PLoS Biol 5(2): e20. doi:10.1371/journal.pbio.0050020.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors