Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are lions not as big as elephants?

16.01.2007
Carnivores are some of the widest ranging terrestrial mammals for their size, and this affects their energy intake and needs.

This difference is also played out in the different hunting strategies of small and large carnivores. Smaller species less than 15-20 kg in weight specialize on very small vertebrates and invertebrates, which weigh a small fraction of their own weight, whereas larger species (>15-20 kg) specialize on large vertebrate prey near their own mass.

While carnivores around the size of a lynx or larger can obtain higher net energy intake by switching to relatively large prey, the difficulty of catching and subduing these animals means that a large-prey specialist would expend twice as much energy as a small-prey specialist of equivalent body size. In a new article published by PLoS Biology, Dr. Chris Carbone and colleagues from the Institute of Zoology, Zoolog ical Society of London reveal how this relationship might have led to the extinction of large carnivores in the past and why our largest modern mammalian carnivores are so threatened.

The authors provide a model of carnivore energetics in relation to predator and prey size, and compare the model predictions with observed estimates of metabolic rates and intake rates taken from animals in the wild. By analyzing the balance between energy intake and expenditure across a range of species, the authors reveal that mammalian carnivores would not be able to exceed a body mass of one ton. Their model predictions are consistent with the data we have. Most mammalian carnivores are relatively small compared with the largest extinct terrestrial herbivorous mammals, such as the Indricothere, which weighed around 15 tons. The largest existing carnivore, the polar bear, is only around half a ton, while the largest known extinct carnivores, such as the short-faced bear, weighed around one ton. The authors also note that the largest terrestrial non-mammalian predators, such as Giganotosaurus and Tyrannosaurs, may have achieved their massive size by having a lower metabolic rate. Indeed, previous estimates of total metabolic rate for these species are similar to those of a mammal weighing about a ton.

... more about:
»carnivore »mammal »mammalian »species

We know that the largest carnivores that exist today are particularly vulnerable to threats imposed by humans and have been shown to have higher rates of extinction in the fossil record than smaller species even prior to the evolution of man. Carnivores at the upper limits of body mass would have been heavily reliant on abundant large prey to both minimize energy expenditure and maintain high rates of energy intake. Slight environmental perturbations, anthropogenic or otherwise, leading to lower prey availability, could readily upset this energy balance. It may have also contributed to the extinction of the largest carnivores and explain why the largest modern mammalian carnivores are so rare and vulnerable today.

Citation: Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PLoS Biol 5(2): e22. doi:10.1371/journal.pbio.0050022.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050022

Further reports about: carnivore mammal mammalian species

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>