Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading cause of US food-borne illness makes its own pathway through cells

15.01.2007
Yale researchers now have some answers about how the bacterium that is the leading cause of food-borne illness in the United States enters cells of the gut and avoids detection and destruction, according to a presentation at the annual meeting of the American Society for Cell Biology in San Diego in December.

While scientists are just beginning to answer basic questions about how Campylobacter jejuni (campylobacter) causes infection, Robert Watson, a graduate student in the Section of Microbial Pathogenesis at Yale University School of Medicine worked out a better way to study the bacteria and reported that it takes an uncommon path as it infects cells.

Since the intestinal lining cells that campylobacter infects do not normally take up bacteria -- or any particles as large as bacteria -- Watson and his advisor, Jorge Galán, the Lucille P Markey Professor of Microbiology and Cell Biology, set out to investigate the path of infection through cells. They found that campylobacter apparently enters into the endocytic pathway that cells use to recycle molecules from their surface. It then quickly diverts its path, creating its own intracellular network of campylobacter-filled vacuoles, or cellular pockets, that make their way toward the nucleus, and finally locate near the cell's transportation hub, the Golgi apparatus.

"It's been known for over two decades that campylobacter can enter intestinal epithelial cells -- but until now no one could show how it was taken up or where it localized. That suggested it had evolved a special mechanism for uptake," said Watson. "Campylobacter seems to have found a special access to these cells and established its own intracellular niche."

... more about:
»Campylobacter »Galán »Watson

The U.S. Centers for Disease Control and Prevention estimates that "campylobacteriosis," one of the most common causes of diarrhea worldwide, strikes 2.4 million Americans a year. Most sufferers recover after a few unpleasant days, but it can be life threatening to those with compromised immune systems including individuals with AIDS. In addition, a rare but serious complication of campylobacter infection is triggering of the autoimmune disorder, Guillain-Barré paralysis.

"Chicken has been a notorious as a source of campylobacter," said Watson. "While the public has been aware of salmonella as a contaminant, the January 2007 issue of Consumer Reports highlights the increase in campylobacter as a problem. Their nationwide analysis of fresh, marketed chicken showed that as much as 80 percent of the meat they tested harbored campylobacter."

Usually, material entering the cell moves to compartments called lysosomes, where an acidic mix of enzymes breaks it down. By monitoring markers for this entry pathway, Watson and Galán could watch as the microbe infected a host cell, briefly associated with the early marker protein EEA-1, and then with the late marker Lamp-1.

"Although the marker proteins indicated that campylobacter trafficked to conventional lysosomes, information from traceable dyes indicated something different," said Watson. While the dyes passed through the endocytic pathway and localized with other material in lysosomes, surprisingly, the dyes did not enter the vacuoles containing campylobacter -- these bacteria had left the conventional pathway.

Watson and Galán also looked at the roles of two Rab GTPases, proteins involved in the maturation of the recycling compartments. These and other experiments gave additional evidence that campylobacter leaves the normal endocytic pathway early and that the separated campylobacter vacuoles move near to the nucleus where they become closely associated with the Golgi apparatus.

"Seeing the path these bacteria follow gives us new perspective for understanding infection and devising ways to combat it," said Galán. As the next step in understanding campylobacter, Watson and Galán are continuing and expanding the work to include studies in special strains of mice that are infected by, and harbor the bacteria but do not show the acute symptoms of infection.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Campylobacter Galán Watson

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>