Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's largest flower evolved from family of much tinier blooms

15.01.2007
Molecular analysis shows giant rafflesia flower grew 79-fold over millions of years

The plant with the world's largest flower -- typically a full meter across, with a bud the size of a basketball -- evolved from a family of plants whose blossoms are nearly all tiny, botanists write this week in the journal Science.

Their genetic analysis of rafflesia reveals that it is closely related to a family that includes poinsettias, the trees that produce natural rubber, castor oil plants, and the tropical root crop cassava.

The team from Harvard University, Southern Illinois University, the Smithsonian Institution, and the University of Wisconsin was led by Harvard's Charles C. Davis.

... more about:
»Evolutionary »blooms »botanist »rafflesia

"For nearly 200 years rafflesia's lineage has confounded plant scientists," says Davis, an assistant professor of organismic and evolutionary biology in Harvard's Faculty of Arts and Sciences. "As a parasite living inside the tissue of a tropical vine, the plant lacks leaves, shoots, or roots, making it difficult to compare to more conventional plants. Most efforts to place plants in the botanical tree of life in the past 25 years have tracked ancestry using molecular markers in genes governing photosynthesis. Rafflesia is a non-photosynthetic parasite, and those genes have apparently been abandoned, meaning that to determine its lineage we had to look at other parts of the plant's genome."

Davis and his colleagues determined that over an estimated 46 million years, rafflesia's blooms, which now weigh up to 15 lbs., evolved at an accelerated pace. However, after increasing in size by a factor of roughly 79, the plant then reverted to a more sedate evolutionary pace.

This evolutionary spurt is one of the most dramatic size changes ever reported among eukaryotes; if humans were to undergo comparable evolutionary growth, Davis says, an average man would end up some 146 meters tall, roughly the height of the Great Pyramid of Giza.

Because rafflesia lacks the genes most commonly used to trace plant ancestry, the scientists delved deeper into the genome, looking at some 11,500 base pairs of DNA to determine that the giant flower's closest relatives are in the Euphorbiaceae family, many of which have blossoms just a few millimeters in diameter.

"The power of nucleic acid comparisons is revealed as well as ever in this stunning deduction," says noted botanist Peter H. Raven, president of the Missouri Botanical Garden in St. Louis, who was not involved in this research. "The massive increase in flower size is one of the most significant among living organisms, and could never have been deduced by conventional methods."

Found growing on the jungle floor in parts of southeastern Asia, rafflesia is unusual in more than just its flower's size. A parasite, it derives its nutrients from a plant in the grapevine family and lacks leaves, stems, or roots. Even more shocking is the plant's carcass-like appearance: Its blooms are a mottled blood red, reek of decaying flesh, and in some cases even emit heat, much like a recently killed animal. These traits help the flower attract the carrion flies that pollinate it.

"While it's surprising to find this giant plant evolved from a family typified by much smaller blossoms, rafflesia is unusual enough that it's frankly been difficult to imagine it fitting neatly into any plant family," Davis says. "Many botanists had refused to even speculate on where this botanical outlier might fit into the tree of life."

Rafflesia was first discovered in the Sumatran rain forest some 180 years ago by Sir Stamford Raffles, governor of the East India Company's establishments in Sumatra, and Joseph Arnold, a naturalist and physician. Shortly before Arnold died of malaria on that same expedition, he described rafflesia as "the greatest prodigy of the vegetable world," adding, "To tell you the truth, had I been alone, and had there been no witnesses, I should think I would have been fearful of mentioning the dimensions of this flower, so much does it exceed every flower I have ever seen or heard of."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Evolutionary blooms botanist rafflesia

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>