Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's largest flower evolved from family of much tinier blooms

15.01.2007
Molecular analysis shows giant rafflesia flower grew 79-fold over millions of years

The plant with the world's largest flower -- typically a full meter across, with a bud the size of a basketball -- evolved from a family of plants whose blossoms are nearly all tiny, botanists write this week in the journal Science.

Their genetic analysis of rafflesia reveals that it is closely related to a family that includes poinsettias, the trees that produce natural rubber, castor oil plants, and the tropical root crop cassava.

The team from Harvard University, Southern Illinois University, the Smithsonian Institution, and the University of Wisconsin was led by Harvard's Charles C. Davis.

... more about:
»Evolutionary »blooms »botanist »rafflesia

"For nearly 200 years rafflesia's lineage has confounded plant scientists," says Davis, an assistant professor of organismic and evolutionary biology in Harvard's Faculty of Arts and Sciences. "As a parasite living inside the tissue of a tropical vine, the plant lacks leaves, shoots, or roots, making it difficult to compare to more conventional plants. Most efforts to place plants in the botanical tree of life in the past 25 years have tracked ancestry using molecular markers in genes governing photosynthesis. Rafflesia is a non-photosynthetic parasite, and those genes have apparently been abandoned, meaning that to determine its lineage we had to look at other parts of the plant's genome."

Davis and his colleagues determined that over an estimated 46 million years, rafflesia's blooms, which now weigh up to 15 lbs., evolved at an accelerated pace. However, after increasing in size by a factor of roughly 79, the plant then reverted to a more sedate evolutionary pace.

This evolutionary spurt is one of the most dramatic size changes ever reported among eukaryotes; if humans were to undergo comparable evolutionary growth, Davis says, an average man would end up some 146 meters tall, roughly the height of the Great Pyramid of Giza.

Because rafflesia lacks the genes most commonly used to trace plant ancestry, the scientists delved deeper into the genome, looking at some 11,500 base pairs of DNA to determine that the giant flower's closest relatives are in the Euphorbiaceae family, many of which have blossoms just a few millimeters in diameter.

"The power of nucleic acid comparisons is revealed as well as ever in this stunning deduction," says noted botanist Peter H. Raven, president of the Missouri Botanical Garden in St. Louis, who was not involved in this research. "The massive increase in flower size is one of the most significant among living organisms, and could never have been deduced by conventional methods."

Found growing on the jungle floor in parts of southeastern Asia, rafflesia is unusual in more than just its flower's size. A parasite, it derives its nutrients from a plant in the grapevine family and lacks leaves, stems, or roots. Even more shocking is the plant's carcass-like appearance: Its blooms are a mottled blood red, reek of decaying flesh, and in some cases even emit heat, much like a recently killed animal. These traits help the flower attract the carrion flies that pollinate it.

"While it's surprising to find this giant plant evolved from a family typified by much smaller blossoms, rafflesia is unusual enough that it's frankly been difficult to imagine it fitting neatly into any plant family," Davis says. "Many botanists had refused to even speculate on where this botanical outlier might fit into the tree of life."

Rafflesia was first discovered in the Sumatran rain forest some 180 years ago by Sir Stamford Raffles, governor of the East India Company's establishments in Sumatra, and Joseph Arnold, a naturalist and physician. Shortly before Arnold died of malaria on that same expedition, he described rafflesia as "the greatest prodigy of the vegetable world," adding, "To tell you the truth, had I been alone, and had there been no witnesses, I should think I would have been fearful of mentioning the dimensions of this flower, so much does it exceed every flower I have ever seen or heard of."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Evolutionary blooms botanist rafflesia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>