Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destructive enzyme shows a benevolent side

12.01.2007
New research shows that a recently discovered enzyme that destroys the messenger RNA (mRNA) for some proteins can also help to protect the mRNA during times of stress. The response might help cancer cells survive chemotherapy and radiation therapy.

The study examined a recently discovered enzyme called PMR1. That enzyme attaches to certain mRNA molecules and remains there like a hand grenade with its pin in place.

These mRNAs carry the information for making highly potent proteins, proteins that cells must stop making suddenly. When that ‘stop' command arrives, the pin is pulled and the enzyme destroys the mRNA, quickly halting production of that protein.

This new study found, however, that under stress conditions, the same enzyme – while attached to the mRNA – helps form temporary shelters within the cell called stress granules. There, the mRNA can be protected so that production of the protein can quickly resume whenever the stress ends, perhaps insuring that the cell survives.

... more about:
»PMR1 »enzyme »granules »mRNA

Stress granules are short-lived aggregates of mRNA and proteins, and they accumulate when cells are subjected to conditions such as starvation, low oxygen (which can occur within large tumors), chemotherapy or radiation therapy.

The study, led by researchers at Ohio State University's Comprehensive Cancer Center, is published in the December issue of the journal Molecular and Cellular Biology.

“The stress response protects cells from these conditions by sequestering mRNAs for those proteins not specifically involved in the stress response itself,” says principal investigator Daniel R. Schoenberg, professor of molecular and cellular biochemistry and a researcher with Ohio State's Comprehensive Cancer Center.

“By understanding how PMR1 and similar enzymes are incorporated into stress granules and inactivated, we may be able to learn how to block this protective mechanism and make it harder for cancer cells to survive cancer therapies.”

Schoenberg first discovered the PMR1 enzyme in 1995, and his lab has been actively studying it since that time.

For this study, Schoenberg and a group of colleagues wanted to learn if the enzyme also destroys its mRNA during periods of stress.

To answer the question, they used cultured cells to which they'd added active and mutant forms of the enzyme. They then stressed the cells using the chemical arsenite, a relative of arsenic.

The investigators found that during stress, the enzyme interacts directly with another protein called TIA-1, a key protein involved in assembling stress granules. This interaction draws the enzyme-mRNA complex into stress granules.

But the researchers were unable to detect any sign that the message was destroyed.

“The fact that we don't see an acceleration of mRNA decay suggests that something in the stress response protects these mRNAs from being degraded, even though the degrading enzyme PMR1 is there in the stress granules with its target mRNA.”

Schoenberg and his colleagues will next study the other proteins within stress granules to try to learn how PMR1-mRNA complex is preserved.

Funding from the National Institute of General Medical Sciences supported this research.

Schoenberg collaborated on this study with Nancy Kedersha at Brigham and Women's Hospital and Harvard Medical School.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: PMR1 enzyme granules mRNA

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>