Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destructive enzyme shows a benevolent side

12.01.2007
New research shows that a recently discovered enzyme that destroys the messenger RNA (mRNA) for some proteins can also help to protect the mRNA during times of stress. The response might help cancer cells survive chemotherapy and radiation therapy.

The study examined a recently discovered enzyme called PMR1. That enzyme attaches to certain mRNA molecules and remains there like a hand grenade with its pin in place.

These mRNAs carry the information for making highly potent proteins, proteins that cells must stop making suddenly. When that ‘stop' command arrives, the pin is pulled and the enzyme destroys the mRNA, quickly halting production of that protein.

This new study found, however, that under stress conditions, the same enzyme – while attached to the mRNA – helps form temporary shelters within the cell called stress granules. There, the mRNA can be protected so that production of the protein can quickly resume whenever the stress ends, perhaps insuring that the cell survives.

... more about:
»PMR1 »enzyme »granules »mRNA

Stress granules are short-lived aggregates of mRNA and proteins, and they accumulate when cells are subjected to conditions such as starvation, low oxygen (which can occur within large tumors), chemotherapy or radiation therapy.

The study, led by researchers at Ohio State University's Comprehensive Cancer Center, is published in the December issue of the journal Molecular and Cellular Biology.

“The stress response protects cells from these conditions by sequestering mRNAs for those proteins not specifically involved in the stress response itself,” says principal investigator Daniel R. Schoenberg, professor of molecular and cellular biochemistry and a researcher with Ohio State's Comprehensive Cancer Center.

“By understanding how PMR1 and similar enzymes are incorporated into stress granules and inactivated, we may be able to learn how to block this protective mechanism and make it harder for cancer cells to survive cancer therapies.”

Schoenberg first discovered the PMR1 enzyme in 1995, and his lab has been actively studying it since that time.

For this study, Schoenberg and a group of colleagues wanted to learn if the enzyme also destroys its mRNA during periods of stress.

To answer the question, they used cultured cells to which they'd added active and mutant forms of the enzyme. They then stressed the cells using the chemical arsenite, a relative of arsenic.

The investigators found that during stress, the enzyme interacts directly with another protein called TIA-1, a key protein involved in assembling stress granules. This interaction draws the enzyme-mRNA complex into stress granules.

But the researchers were unable to detect any sign that the message was destroyed.

“The fact that we don't see an acceleration of mRNA decay suggests that something in the stress response protects these mRNAs from being degraded, even though the degrading enzyme PMR1 is there in the stress granules with its target mRNA.”

Schoenberg and his colleagues will next study the other proteins within stress granules to try to learn how PMR1-mRNA complex is preserved.

Funding from the National Institute of General Medical Sciences supported this research.

Schoenberg collaborated on this study with Nancy Kedersha at Brigham and Women's Hospital and Harvard Medical School.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: PMR1 enzyme granules mRNA

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>