Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel preparation techniques for cardiac glycosides

12.01.2007
The flora of the Earth is a huge inexhaustible “well” of remedies. There are over 12,000 species of medicinal plants and they have been used to treat many different illnesses for several thousands of years. However, using only herbal infusions is not enough to achieve a curative positive effect, medicines have to be obtained from vegetable raw materials and knowledge is required on the mechanism of its action.

For example, to prepare the highly active cardiovascular medication digoxin effective methods have to be developed to extract medicinal substances – glycosides. Such a problem is solved successfully by scientists from the State Research Institute of Organic Chemistry and Technology under the direction of the Project Manager Galina Mikhailovna Komissarova. The International Science and Technology Centre supports the scientific research.

During a 200-year history of the application of cardiac glycosides in medical practice views on the mechanism of their action and the methods of obtaining the medications of the series of cardiotonic glycosides have changed considerably. But one thing remains unchanged – the application of cardiac glycosides at the initial or latent stage of heart failure can correct available functional cardiac abnormalities and prevent the development of obvious heart failure.

A number of patented methods of preparing digoxin from Digitalis lanata with the use of natural enzymes are presently available. However, these patented methods have a number of major shortcomings. “The most essential among them, - says Galina Mikhailovna Komissarova, - is low stability of the fermentation process owing to the quality of herbal raw materials”. Secondly, toxic and explosive solvents, which are costly materials, are used in these methods. Besides, a great number of technological purification stages have to be performed to obtain the final medication; this is a very laborious process.

... more about:
»cardiac »digoxin »glycosides

During project realization the developers from the State Scientific Centre “State Research Institute of Organic Chemistry and Technology” succeeded in avoiding all of the above shortcomings, owing to totally new techniques of growing, picking, drying and storing Digitalis lanata. The obtained plant raw materials are characterized by a stably high content of highly active enzymes. The technique of preparing digoxin by means of enzymatic degradation in aqueous media at 45oC was elaborated, with the process proceeding completely without hindrance to the subsequent extraction and cleaning stages.

The advantages of the proposed method are controlled standard conditions in aqueous media during the formation of digoxin and the modification of conventional stages of digoxin extraction.

The novelty and uniqueness of the proposed Project is that it proposes a method for controlling the activity of enzymes in the raw material; it is designed to facilitate the production of a protein concentrate with certain enzymatic activity, and examination of activity standards required for effectively performing the raw material fermentation stage in the production of digoxin. Using novel techniques, the developers have managed to obtain a test sample – 50 grams of digoxin. In future it is planned to modernize the extraction and purification methods of cardiotonic glycosides and methods of analytical production control that will help to provide medical organizations with the necessary quantity of this medication and it will give people the chance to recover from this serious illness.

Olga Radkevich | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/cardiac-glycosides

Further reports about: cardiac digoxin glycosides

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>