Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel preparation techniques for cardiac glycosides

The flora of the Earth is a huge inexhaustible “well” of remedies. There are over 12,000 species of medicinal plants and they have been used to treat many different illnesses for several thousands of years. However, using only herbal infusions is not enough to achieve a curative positive effect, medicines have to be obtained from vegetable raw materials and knowledge is required on the mechanism of its action.

For example, to prepare the highly active cardiovascular medication digoxin effective methods have to be developed to extract medicinal substances – glycosides. Such a problem is solved successfully by scientists from the State Research Institute of Organic Chemistry and Technology under the direction of the Project Manager Galina Mikhailovna Komissarova. The International Science and Technology Centre supports the scientific research.

During a 200-year history of the application of cardiac glycosides in medical practice views on the mechanism of their action and the methods of obtaining the medications of the series of cardiotonic glycosides have changed considerably. But one thing remains unchanged – the application of cardiac glycosides at the initial or latent stage of heart failure can correct available functional cardiac abnormalities and prevent the development of obvious heart failure.

A number of patented methods of preparing digoxin from Digitalis lanata with the use of natural enzymes are presently available. However, these patented methods have a number of major shortcomings. “The most essential among them, - says Galina Mikhailovna Komissarova, - is low stability of the fermentation process owing to the quality of herbal raw materials”. Secondly, toxic and explosive solvents, which are costly materials, are used in these methods. Besides, a great number of technological purification stages have to be performed to obtain the final medication; this is a very laborious process.

... more about:
»cardiac »digoxin »glycosides

During project realization the developers from the State Scientific Centre “State Research Institute of Organic Chemistry and Technology” succeeded in avoiding all of the above shortcomings, owing to totally new techniques of growing, picking, drying and storing Digitalis lanata. The obtained plant raw materials are characterized by a stably high content of highly active enzymes. The technique of preparing digoxin by means of enzymatic degradation in aqueous media at 45oC was elaborated, with the process proceeding completely without hindrance to the subsequent extraction and cleaning stages.

The advantages of the proposed method are controlled standard conditions in aqueous media during the formation of digoxin and the modification of conventional stages of digoxin extraction.

The novelty and uniqueness of the proposed Project is that it proposes a method for controlling the activity of enzymes in the raw material; it is designed to facilitate the production of a protein concentrate with certain enzymatic activity, and examination of activity standards required for effectively performing the raw material fermentation stage in the production of digoxin. Using novel techniques, the developers have managed to obtain a test sample – 50 grams of digoxin. In future it is planned to modernize the extraction and purification methods of cardiotonic glycosides and methods of analytical production control that will help to provide medical organizations with the necessary quantity of this medication and it will give people the chance to recover from this serious illness.

Olga Radkevich | alfa
Further information:

Further reports about: cardiac digoxin glycosides

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>