Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel preparation techniques for cardiac glycosides

12.01.2007
The flora of the Earth is a huge inexhaustible “well” of remedies. There are over 12,000 species of medicinal plants and they have been used to treat many different illnesses for several thousands of years. However, using only herbal infusions is not enough to achieve a curative positive effect, medicines have to be obtained from vegetable raw materials and knowledge is required on the mechanism of its action.

For example, to prepare the highly active cardiovascular medication digoxin effective methods have to be developed to extract medicinal substances – glycosides. Such a problem is solved successfully by scientists from the State Research Institute of Organic Chemistry and Technology under the direction of the Project Manager Galina Mikhailovna Komissarova. The International Science and Technology Centre supports the scientific research.

During a 200-year history of the application of cardiac glycosides in medical practice views on the mechanism of their action and the methods of obtaining the medications of the series of cardiotonic glycosides have changed considerably. But one thing remains unchanged – the application of cardiac glycosides at the initial or latent stage of heart failure can correct available functional cardiac abnormalities and prevent the development of obvious heart failure.

A number of patented methods of preparing digoxin from Digitalis lanata with the use of natural enzymes are presently available. However, these patented methods have a number of major shortcomings. “The most essential among them, - says Galina Mikhailovna Komissarova, - is low stability of the fermentation process owing to the quality of herbal raw materials”. Secondly, toxic and explosive solvents, which are costly materials, are used in these methods. Besides, a great number of technological purification stages have to be performed to obtain the final medication; this is a very laborious process.

... more about:
»cardiac »digoxin »glycosides

During project realization the developers from the State Scientific Centre “State Research Institute of Organic Chemistry and Technology” succeeded in avoiding all of the above shortcomings, owing to totally new techniques of growing, picking, drying and storing Digitalis lanata. The obtained plant raw materials are characterized by a stably high content of highly active enzymes. The technique of preparing digoxin by means of enzymatic degradation in aqueous media at 45oC was elaborated, with the process proceeding completely without hindrance to the subsequent extraction and cleaning stages.

The advantages of the proposed method are controlled standard conditions in aqueous media during the formation of digoxin and the modification of conventional stages of digoxin extraction.

The novelty and uniqueness of the proposed Project is that it proposes a method for controlling the activity of enzymes in the raw material; it is designed to facilitate the production of a protein concentrate with certain enzymatic activity, and examination of activity standards required for effectively performing the raw material fermentation stage in the production of digoxin. Using novel techniques, the developers have managed to obtain a test sample – 50 grams of digoxin. In future it is planned to modernize the extraction and purification methods of cardiotonic glycosides and methods of analytical production control that will help to provide medical organizations with the necessary quantity of this medication and it will give people the chance to recover from this serious illness.

Olga Radkevich | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/cardiac-glycosides

Further reports about: cardiac digoxin glycosides

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>