Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standard fly brain sized up

13.02.2002


Average insect brain should help spot defects and their causes.


A creature of little brain, the fruit fly is popular with geneticists



Two hair’s breadths long and five across - that’s the average capacity of a fly’s brain, German researchers have calculated. They hope to set a benchmark for crania by which oddballs can be judged.

Although it is a creature of little brain, the fruit fly (Drosophila) is popular with geneticists. Researchers often study flies that lack a particular gene, looking for flaws that might hint at the gene’s function in the body.


But you can’t spot a faulty brain until you have a reference. So Martin Heisenberg, of the University of Wurzburg in Germany, and his colleagues have measured up a fly ’standard’ brain1.

Drosophila crania are pretty uniform, they found - with no obvious masterminds or dunces. The team dissected 120 brains and sized them up using a three-dimensional microscope. Using specially designed software, they aligned the images and drew up average dimensions.

"It’s a good idea," says Nicholas Strausfeld of the University of Arizona, who runs the web atlas Flybrain. Knowing the average shape and size means that flies with subtle brain defects can be picked out. In future, thousands of insects with genetic mutations could be screened. Learning and memory are particularly hot topics, in which such comparisons could prove useful, says Strausfeld.

Different strain’s brains reflect their lifestyles, the team has already found. One line, bred in jars, proves the ’use it or lose it’ adage. Years of cramped conditions has shrunk the brain region that controls flight and expanded the one that governs walking. And with a carefully controlled sex life, the lobe that sniffs out mates has also fallen into decline.

Heisenberg hopes that fly researchers will adopt his ’standard’ brain to collate information on gene activity. Around two-thirds of a fly’s genes operate in the brain - each one at a different time and place. If mapped onto a template, these could be compiled into a central database that would enable labs to compare their results. "He’s got to persuade the community," points out Strausfeld, before the standard can be adopted.

Model human

Efforts to gauge the average human brain are taking a similar tack, says John Mazziotta of the University of California, Los Angeles, who heads the International Consortium for Brain Mapping.

Using magnetic-resonance imaging (MRI) pictures collected from nearly 7,000 people, the team hopes to define a human reference brain. This could be compared to patients with Alzheimer’s disease or stroke to pinpoint brain regions that are affected. The human standard is set to be completed by September 2003.

"We’d like to have such a reference brain," says Robert Brandt of the Free University of Berlin, who is compiling an equivalent for bees.

References

  1. Rein, K. The Drosophila Standard Brain. Current Biology, 12, 227 - 231, (2002).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-4.html

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>