Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standard fly brain sized up

13.02.2002


Average insect brain should help spot defects and their causes.


A creature of little brain, the fruit fly is popular with geneticists



Two hair’s breadths long and five across - that’s the average capacity of a fly’s brain, German researchers have calculated. They hope to set a benchmark for crania by which oddballs can be judged.

Although it is a creature of little brain, the fruit fly (Drosophila) is popular with geneticists. Researchers often study flies that lack a particular gene, looking for flaws that might hint at the gene’s function in the body.


But you can’t spot a faulty brain until you have a reference. So Martin Heisenberg, of the University of Wurzburg in Germany, and his colleagues have measured up a fly ’standard’ brain1.

Drosophila crania are pretty uniform, they found - with no obvious masterminds or dunces. The team dissected 120 brains and sized them up using a three-dimensional microscope. Using specially designed software, they aligned the images and drew up average dimensions.

"It’s a good idea," says Nicholas Strausfeld of the University of Arizona, who runs the web atlas Flybrain. Knowing the average shape and size means that flies with subtle brain defects can be picked out. In future, thousands of insects with genetic mutations could be screened. Learning and memory are particularly hot topics, in which such comparisons could prove useful, says Strausfeld.

Different strain’s brains reflect their lifestyles, the team has already found. One line, bred in jars, proves the ’use it or lose it’ adage. Years of cramped conditions has shrunk the brain region that controls flight and expanded the one that governs walking. And with a carefully controlled sex life, the lobe that sniffs out mates has also fallen into decline.

Heisenberg hopes that fly researchers will adopt his ’standard’ brain to collate information on gene activity. Around two-thirds of a fly’s genes operate in the brain - each one at a different time and place. If mapped onto a template, these could be compiled into a central database that would enable labs to compare their results. "He’s got to persuade the community," points out Strausfeld, before the standard can be adopted.

Model human

Efforts to gauge the average human brain are taking a similar tack, says John Mazziotta of the University of California, Los Angeles, who heads the International Consortium for Brain Mapping.

Using magnetic-resonance imaging (MRI) pictures collected from nearly 7,000 people, the team hopes to define a human reference brain. This could be compared to patients with Alzheimer’s disease or stroke to pinpoint brain regions that are affected. The human standard is set to be completed by September 2003.

"We’d like to have such a reference brain," says Robert Brandt of the Free University of Berlin, who is compiling an equivalent for bees.

References

  1. Rein, K. The Drosophila Standard Brain. Current Biology, 12, 227 - 231, (2002).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-4.html

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>