Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene associated with severe kidney failure in diabetes

11.01.2007
A research team at Wake Forest University Baptist Medical Center and the University of Heidelberg has proven that a gene protects some people with diabetes from developing severe kidney failure or "end-stage renal disease."

Diabetes is the leading cause of end-stage kidney disease worldwide, an illness that requires either kidney dialysis treatments or a kidney transplant for survival.

The carnosinase 1 gene, located on human chromosome 18, produces the protective factor, said Barry I. Freedman, M.D., the John H. Felts III Professor and head of the Section on Nephrology, in an article in Nephrology Dialysis Transplantation published online.

"This is a major gene that appears to be associated with development of severe diabetic kidney disease," he said.

The research team evaluated 858 subjects, including diabetic patients with end-stage kidney failure on dialysis, diabetic patients with normal kidney function, and healthy non-diabetic individuals. They confirmed that a protective form of the carnosinase 1 gene was present in greater frequency among both healthy individuals and diabetic subjects without kidney disease, compared to the diabetic patients on dialysis who more commonly had forms of the gene that were not protective.

This discovery may lead to novel treatment strategies in susceptible diabetic patients to protect them from kidney failure and may provide a marker to determine which diabetic patients are at increased risk for future kidney disease, Freedman said.

The carnosinase 1 gene produces an enzyme called carnosinase. Carnosinase inactivates the protective substance carnosine. Carnosine appears to prevent scarring from developing in kidney tissue and serves as a scavenger of damaging oxygen-free radicals.

"Prior to these genetic analyses, kidney doctors were unaware that this pathway played an important role in diabetic kidney disease," Freedman said.

He added that the groups at Wake Forest and in Germany had been looking for the gene or genes after concluding that a region on chromosome 18 was important in predisposing people who have type 2 diabetes (adult onset diabetes) to the development of severe kidney failure. Freedman said the actions of this gene apply to Europeans, American whites and Arabs.

When his group repeated the analysis in black Americans, there was no evidence that the carnosinase pathway was involved in their kidney failure.

"It is possible that American blacks have different carnosine metabolism, making them less susceptible to alterations in carnosinase gene activity. Analyses are currently under way," said Freedman. "It is also possible that an additional gene or genes on chromosome 18 is associated with susceptibility to end-stage kidney disease in black Americans, and our group is actively trying to identify them."

Freedman said that among people who are susceptible to kidney failure, "it will be important to evaluate whether the administration of carnosine or agents that inhibit carnosinase activity will protect diabetic individuals from the development of progressive kidney disease."

He said that while carnosine is available over the counter in health food stores, it is possible that excessive carnosinase enzyme activity could prevent carnosine supplementation from protecting the kidney. As such, carnosinase blockers may prove to be more important.

Freedman noted that Wake Forest researchers "have one of the largest existing collections of DNA samples from black and white families with multiple members having end-stage kidney disease. We have been evaluating these families since 1991."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>