Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goldfinger held grain of truth

13.02.2002


Skin deep: oxygen from the air feeds the epidermis and some of the dermis
© SPL


Our skin takes its oxygen straight from the air.

The James Bond movie Goldfinger spawned the urban myth that a person can suffocate if air cannot reach their skin. But the plot contains a grain of truth, new research reveals - our skin gets its oxygen from the atmosphere, not the blood.

Air supplies the top 0.25-0.4 mm of the skin with oxygen, dermatologist Markus Stücker of the Ruhr-University in Bochum, Germany, and his colleagues have found. This is almost 10 times deeper than previous estimates. This zone includes the entire outermost layer of living cells - the epidermis - and some of the dermis below, which contains sweat glands and hair roots.



The finding could change doctors’ approach to skin conditions. Says David Harrison, who studies the use of oxygen by the skin at the University Hospital of North Durham, UK: "Everyone thought that atmospheric oxygen was unimportant, but a significant depth of the skin is supplied from the air."

Air cut

Diseases of the skin and its blood supply take a heavy toll, particularly on the elderly. The UK National Health Service, for example, spends about £500 million (US$700 million) each year on treating chronic leg ulcers.

"Most physicians think these are due to missing oxygen," says Stücker. But his finding that skin has free access to all the oxygen it needs suggests instead that ulcers may be caused instead by poor blood supply starving tissues of nutrients.

Harrison thinks that tissue damage could occur when the balance between blood supply and atmospheric oxygen supply breaks down. He points out that medics usually bandage an ulcer, which, by cutting it off from the air, may actually worsen any oxygen shortage.

Air’s oxygenation of skin could also be relevant to diseases in which skin cells divide excessively, such as psoriasis and eczema. Covering the skin can ease these conditions, but no one knows why. Stücker’s finding, coupled with the fact that oxygen boosts cell division, could provide an answer.

Healthy skin that is isolated from the air can compensate by drawing oxygen from the blood, but diseased skin seems to be unable to do this.

Air traffic control

Stücker and his colleagues measured skin breathing by covering a small patch of skin with an oxygen-sensitive membrane. Previous methods were invasive - sticking an electrode into the skin - or involved putting the entire torso, or a limb, into a chamber to measure gas exchange. This hid the large amounts of variation in gas exchange in different areas.

Although the skin relies on air, only 0.4% of the body’s total oxygen needs are supplied this way, the team found. Cutting off the blood supply to the skin had almost no effect on the level of oxygen in the organs. Results were the same for 20-year-old subjects as for 70-year-olds.


References

  1. Stücker, M. et al. The cutaneous uptake of oxygen contributes significantly to the oxygen supply of human dermis and epidermis. Journal of Physiology, 538, 985 - 994, (2002).

JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-5.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>