Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goldfinger held grain of truth

13.02.2002


Skin deep: oxygen from the air feeds the epidermis and some of the dermis
© SPL


Our skin takes its oxygen straight from the air.

The James Bond movie Goldfinger spawned the urban myth that a person can suffocate if air cannot reach their skin. But the plot contains a grain of truth, new research reveals - our skin gets its oxygen from the atmosphere, not the blood.

Air supplies the top 0.25-0.4 mm of the skin with oxygen, dermatologist Markus Stücker of the Ruhr-University in Bochum, Germany, and his colleagues have found. This is almost 10 times deeper than previous estimates. This zone includes the entire outermost layer of living cells - the epidermis - and some of the dermis below, which contains sweat glands and hair roots.



The finding could change doctors’ approach to skin conditions. Says David Harrison, who studies the use of oxygen by the skin at the University Hospital of North Durham, UK: "Everyone thought that atmospheric oxygen was unimportant, but a significant depth of the skin is supplied from the air."

Air cut

Diseases of the skin and its blood supply take a heavy toll, particularly on the elderly. The UK National Health Service, for example, spends about £500 million (US$700 million) each year on treating chronic leg ulcers.

"Most physicians think these are due to missing oxygen," says Stücker. But his finding that skin has free access to all the oxygen it needs suggests instead that ulcers may be caused instead by poor blood supply starving tissues of nutrients.

Harrison thinks that tissue damage could occur when the balance between blood supply and atmospheric oxygen supply breaks down. He points out that medics usually bandage an ulcer, which, by cutting it off from the air, may actually worsen any oxygen shortage.

Air’s oxygenation of skin could also be relevant to diseases in which skin cells divide excessively, such as psoriasis and eczema. Covering the skin can ease these conditions, but no one knows why. Stücker’s finding, coupled with the fact that oxygen boosts cell division, could provide an answer.

Healthy skin that is isolated from the air can compensate by drawing oxygen from the blood, but diseased skin seems to be unable to do this.

Air traffic control

Stücker and his colleagues measured skin breathing by covering a small patch of skin with an oxygen-sensitive membrane. Previous methods were invasive - sticking an electrode into the skin - or involved putting the entire torso, or a limb, into a chamber to measure gas exchange. This hid the large amounts of variation in gas exchange in different areas.

Although the skin relies on air, only 0.4% of the body’s total oxygen needs are supplied this way, the team found. Cutting off the blood supply to the skin had almost no effect on the level of oxygen in the organs. Results were the same for 20-year-old subjects as for 70-year-olds.


References

  1. Stücker, M. et al. The cutaneous uptake of oxygen contributes significantly to the oxygen supply of human dermis and epidermis. Journal of Physiology, 538, 985 - 994, (2002).

JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-5.html

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>