Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning green gunk to gold, anti-cancer gold

11.01.2007
Combining synthetic chemistry techniques with a knowledge of the properties and actions of enzymes, scientists have been able to produce an exciting class of anti-cancer drugs originally isolated from blue-green algae.

This accomplishment is expected to make it possible to produce enough of the promising drugs for use in clinical trials.

In a study featured on the cover of the January issue of the journal ACS Chemical Biology, a scientific team lead by University of Michigan Life Sciences Institute Research Professor David H. Sherman and researcher Zachary Q. Beck found the trick to turning the green gunk into gold—cancer fighting gold.

"It was simply too difficult to use the native blue-green algae for high-level production using traditional fermentation approaches," said Sherman. But the compound, called cryptophycin 1, held so much promise as an anti-cancer drug that organic chemists got busy trying to find ways to make a synthetic form of the compound in large enough quantities for clinical trials.

Developing an efficient synthetic route to natural product compounds and their analogs is often an essential step in drug development. With drugs such as penicillin and tetracycline, it can easily be done, but cryptophycins present more of a challenge. Sherman's team realized that with all cryptophycins, the most difficult step came very late in the synthesis, at the point at which a key part called an epoxide—a highly strained, three-membered ring oxygen-containing group, crucial for the drug's anti-cancer activity—becomes attached to the molecule.

The epoxide group can be attached in two configurations, designated as alpha and beta. Scientists have known for several years that the beta configuration was absolutely required for the anti-cancer properties of the drug, but were unable to devise efficient synthetic strategies that favored that configuration.

Sherman's team accomplished this by isolating the entire set of biosynthetic genes and key enzymes and developing a new, efficient method to manufacture the broad class of cryptophycin natural products, including important analogs with clinical potential. This included characterization of an enzyme, cytochrome P450, that always introduces the epoxide in the desired beta configuration.

Sherman, who is also the John G. Searle Professor of Medicinal Chemistry in the College of Pharmacy, believes that this approach will allow effective new cryptophycin analogs with low levels of side effects to be created for clinical trials.

"This issue represented an exciting target that offered not only an interesting scientific problem, but the potential to do something of practical importance in creating a promising anti-cancer drug," he said.

"Biosynthetic Characterization and Chemoenzymatic Assembly of the Cryptophycins. Potent Anticancer Agents from Nostoc Cyanobionts" by Magarvey N. A.; Beck Z. Q.; Golakoti T. ; Ding Y. ; Huber U. ; Hemscheidt T. K.; Abelson D. ; Moore R. E.; Sherman D. H. appeared online Dec.15 and is the cover story in the print version of ACS Chemical Biology January, 2007.

Robin Stephenson | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Configuration anti-cancer cryptophycin synthetic

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>