Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation may reduce Alzheimer's risk

10.01.2007
Adults with a genetic variation enabling them to express higher levels of fetal hemoglobin may have a reduced risk of Alzheimer's disease, researchers say.

A study of 209 families with at least two siblings with Alzheimer's and one unaffected sibling showed that those with this genetic variation are less likely to have the disease, researchers say in Neurobiology of Aging. An estimated 25 percent of the population has the XmnI polymorphism.

The study, available online but not yet scheduled for print, also showed that beta amyloid peptide, a major culprit in Alzheimer's, has an affinity for adult hemoglobin, says Dr. William D. Hill, neuroscientist at the Medical College of Georgia and Veterans Affairs Medical Center in Augusta and a corresponding author.

The hemoglobin attraction was discovered by using phage display technology to screen thousands of molecules in the human brain to find those that interact with beta amyloid peptide. This approach uses a virus to infect a bacterium so the bacterium will copy the virus.

... more about:
»Amyloid »Polymorphism »XmnI »hemoglobin »patients

The result looks like a microscopic cigar with the proteins of interest as whiskers on one end, says Dr. Hill. In this case, a library of brain molecules was inserted into the virus' whiskers to find proteins that would stick to beta amyloid.

Hemoglobin, found in red blood cells and responsible for carrying oxygen in the body, was among those that stuck.

Surprised that hemoglobin was even present, Dr. Hill suspected it was an artifact of preparing brain tissue for the library. But once he saw the attraction, he could not ignore it.

His lab actually first found an attraction for fetal hemoglobin, another surprise since most adults have little of this substance that snatches oxygen from the placenta and holds onto it tightly for the fetus. Looking further, his lab found adult hemoglobin was binding as well, so Dr. Hill and MCG hemoglobin experts Drs. Abdullah and Ferdane Kutlar decided to look at the XmnI polymorphism, which can significantly increase fetal hemoglobin expression in adults.

They turned to colleagues at the University of Alabama at Birmingham, one of three sites that contributed families to the National Institute of Mental Health Alzheimer's databank.

At the UAB databank, headed by Dr. Rodney C.P. Go, researchers found more surprises. "We wanted to look at people who had Alzheimer's and family members who don't to see who expressed the polymorphism the most," says Dr. Hill. They expected it would be the Alzheimer's patients and found just the opposite.

In what they suspect to be a horrific vicious cycle, beta amyloid could injure red blood cells, allowing more of them than usual to break open and spill their contents, including oxygen-carrying hemoglobin, into the bloodstream. Free hemoglobin is toxic; it can easily lose its iron group, causing cell-damaging oxidative stress. Now it appears freed hemoglobin may also bind to beta amyloid, which may enhance that protein's ability to wreak havoc in the brain.

Red blood cells break down every day and the body has molecules that bind free hemoglobin and iron and take them to the liver for elimination. "Part of our hypothesis is that it may be free-radical injury of our red blood cells by the beta amyloid that releases excessive hemoglobin which overwhelms our body's natural system for protecting us from free hemoglobin," Dr. Hill says.

Work in the late 1990s showed fragments of beta amyloid could actually attack red blood cell membranes and cause them to destruct, says Dr. Hill. "And, there is some evidence that red blood cells of Alzheimer's patients have been damaged so we think red blood cells are more fragile in some Alzheimer's patients allowing them to be more likely to break open.

Although the XmnI polymorphism's protection mechanism is not clear, the researchers found in certain circumstances, adult hemoglobin bound better to beta amyloid, so if there are higher levels of fetal hemoglobin, there may not be as much interaction and subsequent injury, Dr. Hill says.

To determine the impact of the genetic mutation on Alzheimer's risk, studies need to be done on more Alzheimer's patients and their families, including taking blood levels of fetal hemoglobin, says Dr. Rodney T. Perry, UAB molecular geneticist and a study corresponding author.

"More studies are needed to confirm the physiologic basis of the interaction," says Dr. Perry who already is working with Dr. Hill to submit a grant to pursue more answers. If they document higher fetal hemoglobin levels in healthy family members with the XmnI polymorphism, the hypothesis that it is providing some sort of protective measure is more likely, says Dr. Perry. Also the amount of disease protection has yet to be determined, he notes. "It may be a small protection."

Either way, the role needs pursuing, Dr. Perry says. "It helps in trying to fill in the pieces of the puzzle of what is going on in the pathogenesis and different etiologies of the disease, how it may come about."

If they are right, the findings could open the doors to treatment approaches that increase fetal hemoglobin levels, Dr. Hill says. One such drug, hydroxyurea, already is used to treat sickle cells patients because fetal hemoglobin will not sickle.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Amyloid Polymorphism XmnI hemoglobin patients

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>