Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically altered cells may help artificial skin fight infection

09.01.2007
Cincinnati burn researchers have created genetically modified skin cells that, when added to cultured skin substitutes, may help fight off potentially lethal infections in patients with severe burns.

Dorothy Supp, PhD, and her team found that skin cells that were genetically altered to produce higher levels of a protein known as human beta defensin 4 (HBD4) killed more bacteria than normal skin cells.

HBD4 is one in a class of proteins that exist throughout the body as part of its natural defense system. Researchers have only recently begun targeting these tiny molecules as a way to combat infections.

"If we can add these genetically modified cells to bioengineered skin substitutes, it would provide an important defense system boost during the initial grafting period, when the skin is most susceptible to infection," explains Supp, an adjunct research associate professor at the University of Cincinnati (UC) and researcher at Cincinnati Shriners Hospital for Children.

... more about:
»Infection »Supp »burn »genetically »graft »skin

Supp says defensins could become an effective alternative method for burn wound care and infection control. Using them in cultured skin substitutes, she adds, could also decrease a patient's risk for infection, improve skin graft survival and reduce dependence on topical antibiotics.

UC researchers report these findings in the January issue of the Journal of Burn Care and Research.

Cultured skin substitutes are grown in a laboratory using cells from a burn patient's own skin. These cells are cultured, expanded and combined with a spongy layer of collagen to make skin grafts that are reattached to the burn wound.

"Cultured skin substitutes are improving the lives of many burn patients, but they also have limitations--including an increased susceptibility to infection," says Supp. "Because cultured skin grafts aren't connected to the circulatory system at the time of grafting, they aren't immediately exposed to circulating antibiotic drugs or antibodies from the body's immune system to fight off infection."

Currently, physicians manage cultured skin graft infections during the early healing period by continually wrapping the wound in dressings soaked in antimicrobial drugs. Although this protects the grafts, Supp says, it can also contribute to the emergence of drug-resistant strains of bacteria.

"When you give the patient the same drug topically and orally, the risk for drug-resistant bacteria to emerge is greatly increased," says Supp. "We need alternative methods for combating infection in burn patients.

In this three-year laboratory study, Supp isolated the HBD4 gene from donated tissue samples and transferred it into surface skin cells (keratinocytes) to give them enhanced infection-fighting abilities. These cells were then infected with pseudomonas aeruginosa, a type of bacteria found commonly in hospitals, and allowed to incubate. Analysis revealed that the genetically altered cells containing HBD4 were more resistant to microbial infections than the unaltered cells.

"If it proves effective in additional testing," Supp predicts, "this type of gene therapy could be a promising alternative infection control method for burn wounds."

Researchers hope to begin testing this approach in an animal model in early 2007.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Infection Supp burn genetically graft skin

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>