Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetically altered cells may help artificial skin fight infection

Cincinnati burn researchers have created genetically modified skin cells that, when added to cultured skin substitutes, may help fight off potentially lethal infections in patients with severe burns.

Dorothy Supp, PhD, and her team found that skin cells that were genetically altered to produce higher levels of a protein known as human beta defensin 4 (HBD4) killed more bacteria than normal skin cells.

HBD4 is one in a class of proteins that exist throughout the body as part of its natural defense system. Researchers have only recently begun targeting these tiny molecules as a way to combat infections.

"If we can add these genetically modified cells to bioengineered skin substitutes, it would provide an important defense system boost during the initial grafting period, when the skin is most susceptible to infection," explains Supp, an adjunct research associate professor at the University of Cincinnati (UC) and researcher at Cincinnati Shriners Hospital for Children.

... more about:
»Infection »Supp »burn »genetically »graft »skin

Supp says defensins could become an effective alternative method for burn wound care and infection control. Using them in cultured skin substitutes, she adds, could also decrease a patient's risk for infection, improve skin graft survival and reduce dependence on topical antibiotics.

UC researchers report these findings in the January issue of the Journal of Burn Care and Research.

Cultured skin substitutes are grown in a laboratory using cells from a burn patient's own skin. These cells are cultured, expanded and combined with a spongy layer of collagen to make skin grafts that are reattached to the burn wound.

"Cultured skin substitutes are improving the lives of many burn patients, but they also have limitations--including an increased susceptibility to infection," says Supp. "Because cultured skin grafts aren't connected to the circulatory system at the time of grafting, they aren't immediately exposed to circulating antibiotic drugs or antibodies from the body's immune system to fight off infection."

Currently, physicians manage cultured skin graft infections during the early healing period by continually wrapping the wound in dressings soaked in antimicrobial drugs. Although this protects the grafts, Supp says, it can also contribute to the emergence of drug-resistant strains of bacteria.

"When you give the patient the same drug topically and orally, the risk for drug-resistant bacteria to emerge is greatly increased," says Supp. "We need alternative methods for combating infection in burn patients.

In this three-year laboratory study, Supp isolated the HBD4 gene from donated tissue samples and transferred it into surface skin cells (keratinocytes) to give them enhanced infection-fighting abilities. These cells were then infected with pseudomonas aeruginosa, a type of bacteria found commonly in hospitals, and allowed to incubate. Analysis revealed that the genetically altered cells containing HBD4 were more resistant to microbial infections than the unaltered cells.

"If it proves effective in additional testing," Supp predicts, "this type of gene therapy could be a promising alternative infection control method for burn wounds."

Researchers hope to begin testing this approach in an animal model in early 2007.

Amanda Harper | EurekAlert!
Further information:

Further reports about: Infection Supp burn genetically graft skin

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>