Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find guardian gene's choices crucial to stopping cancer process

09.01.2007
Scientists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have uncovered a novel pathway by which the anti-cancer gene p53 springs into action, protecting a damaged cell from becoming cancer.

The gene can either halt the cell's growth or send it spiraling toward certain death. How this choice is made, the researchers say, could have implications for future strategies in chemotherapy drug development.

According to Steven McMahon, Ph.D., associate professor of cancer biology at Jefferson Medical College, who led the work, the p53 gene's – or rather its protein's – ability to direct a damaged cell to either stop growing or commit suicide depends on turning on separate groups of target genes. He and his co-workers have found that after a cell's DNA is damaged, the p53 protein's ability to bind to the DNA can be affected. Two enzymes, hMOF and TIP60, can chemically alter an amino acid, lysine 120, at the binding site, in turn influencing p53's decision on which target genes to turn on. The alteration can short-circuit p53's ability to cause the damaged cell to commit suicide, though it can still stop cell growth, suggesting that this change may help explain a mechanism behind p53's choice. They report their findings in the journal Molecular Cell.

"It's been known that p53 can induce cell cycle arrest or apoptosis (programmed cell death) as a way of eliminating developing cancer cells in response to cell damage, but no one has known how the choice is made," says Dr. McMahon. "This work narrows how the decision is made."

... more about:
»Cancer »McMahon »p53

The findings could have implications for future drug development strategies. "Most chemotherapy strategies are aimed at getting cancer cells to die," Dr. McMahon says. "Figuring out what pathways p53 uses to cause that versus cell cycle arrest is important. It looks like this new modification that we have identified helps p53 make that decision."

"p53 is such an important player in the cancerous process – it's nearly always mutated or inactivated in cancer – that continuing to understand more about how it works will likely have significant implications for cancer research," says Dr. McMahon. "We wouldlike to understand the interplay between this newly identified pathway and others involved in p53 and cancer.

"Since p53 can make this decision, this might give some insight into which function of p53 is more important in which tissues," says co-author Stephen Sykes, a Ph.D. candidate at the University of Pennsylvania. "For example, K120 (lysine 120) mutations cause tumors in the prostate, but are not so much involved in causing immune system cancers such as lymphomas. That could suggest that p53's potential to cause cell death could be more important in certain tissues than in others. In the future, if someone could develop therapies that could specifically activate p53's potential to drive programmed cell death versus the cell cycle arrest potential, it might influence how a doctor might choose to treat a certain type of cancer.

"This may potentially enable the development of a cancer drug that would stimulate the enzymes to promote this modification driving p53 to apoptosis."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Cancer McMahon p53

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>