Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH Cancer Center researchers find new gene associated with Wilms tumor

09.01.2007
Mutations to gene on X chromosome found in 30 percent of pediatric kidney cancer cases

Researchers at the Massachusetts General Hospital (MGH) Cancer Center have discovered a novel gene mutation associated with Wilms tumor, the most common pediatric kidney cancer. The newly identified gene is mutated in about 30 percent of cases of Wilms tumor and is located on the sex-determining X chromosome, which means that a single altered copy would be sufficient for tumor formation. The new gene does not appear linked to inherited forms of the disease.

"This is the first X chromosome gene directly implicated as a tumor suppressor," says Daniel A. Haber, MD, PhD, director of the MGH Cancer Center and senior author of the report, which will appear in the journal Science and is receiving early online release on the Science Express website at http://www.sciencexpress.org. "It has the potential of someday being a useful prognostic marker for Wilms tumor patients, and learning about its normal function could tell us more about both normal kidney development and tumorigenesis."

Also called nephroblastoma, Wilms tumor develops in one out of 10,000 children and is usually treated successfully with surgery and chemotherapy. Mutations in a gene called WT1, first identified in 1990, cause about 5 percent of cases, and a few other genes are associated with rare syndromes that can include Wilms tumor. Those with a family history of the disease have an increased risk of developing the cancer in both kidneys.

... more about:
»Haber »Kidney »MGH »Pediatric »WTX »X chromosome

Since so few cases of Wilms tumor could be attributed to the identified mutations, the MGH Cancer Center researchers analyzed tumor samples from 82 patients to search for additional genetic abnormalities. Genome screening and sequencing tests showed that nearly 30 percent of the samples had either deletions or mutations in the same area of the X chromosome, indicating a new cancer gene that the researchers have named WTX. In samples from female patients, mutated copies of WTX were found only on the active copy of the X chromosome.

"Males have only one X chromosome, so for them a single mutation can silence the gene and cause a tumor," Haber explains. "Females have two X chromosomes, but one is inactivated during normal development. We showed that mutations specifically occur on the active X in female Wilms patients, so it takes a single genetic event to inactivate WTX in either males or females. That's in contrast to other tumor suppressor genes, which only can be inactivated by independent mutations affecting both copies of the gene."

The researchers also found that WTX is expressed in cells involved in embryonic kidney development, suggesting that it normally plays a key role in the organ's formation. They are now investigating the gene's normal function and studying its disruption in an animal model.

"The biology that links pediatric cancers to normal organ development is fascinating," says Haber. "Adult kidney cancers arise slowly from the organ's tubules and are highly resistant to current chemotherapy drugs, but pediatric kidney tumors arise in the early stem cells of the kidney's filtering apparatus and are highly responsive to chemotherapy. Following up on these findings should help us better understand this tumor and may lead to a new appreciation of the X chromosome's role in other forms of cancer." Haber is the Laurel Schwartz Professor of Oncology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

Further reports about: Haber Kidney MGH Pediatric WTX X chromosome

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>