Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MGH Cancer Center researchers find new gene associated with Wilms tumor

Mutations to gene on X chromosome found in 30 percent of pediatric kidney cancer cases

Researchers at the Massachusetts General Hospital (MGH) Cancer Center have discovered a novel gene mutation associated with Wilms tumor, the most common pediatric kidney cancer. The newly identified gene is mutated in about 30 percent of cases of Wilms tumor and is located on the sex-determining X chromosome, which means that a single altered copy would be sufficient for tumor formation. The new gene does not appear linked to inherited forms of the disease.

"This is the first X chromosome gene directly implicated as a tumor suppressor," says Daniel A. Haber, MD, PhD, director of the MGH Cancer Center and senior author of the report, which will appear in the journal Science and is receiving early online release on the Science Express website at "It has the potential of someday being a useful prognostic marker for Wilms tumor patients, and learning about its normal function could tell us more about both normal kidney development and tumorigenesis."

Also called nephroblastoma, Wilms tumor develops in one out of 10,000 children and is usually treated successfully with surgery and chemotherapy. Mutations in a gene called WT1, first identified in 1990, cause about 5 percent of cases, and a few other genes are associated with rare syndromes that can include Wilms tumor. Those with a family history of the disease have an increased risk of developing the cancer in both kidneys.

... more about:
»Haber »Kidney »MGH »Pediatric »WTX »X chromosome

Since so few cases of Wilms tumor could be attributed to the identified mutations, the MGH Cancer Center researchers analyzed tumor samples from 82 patients to search for additional genetic abnormalities. Genome screening and sequencing tests showed that nearly 30 percent of the samples had either deletions or mutations in the same area of the X chromosome, indicating a new cancer gene that the researchers have named WTX. In samples from female patients, mutated copies of WTX were found only on the active copy of the X chromosome.

"Males have only one X chromosome, so for them a single mutation can silence the gene and cause a tumor," Haber explains. "Females have two X chromosomes, but one is inactivated during normal development. We showed that mutations specifically occur on the active X in female Wilms patients, so it takes a single genetic event to inactivate WTX in either males or females. That's in contrast to other tumor suppressor genes, which only can be inactivated by independent mutations affecting both copies of the gene."

The researchers also found that WTX is expressed in cells involved in embryonic kidney development, suggesting that it normally plays a key role in the organ's formation. They are now investigating the gene's normal function and studying its disruption in an animal model.

"The biology that links pediatric cancers to normal organ development is fascinating," says Haber. "Adult kidney cancers arise slowly from the organ's tubules and are highly resistant to current chemotherapy drugs, but pediatric kidney tumors arise in the early stem cells of the kidney's filtering apparatus and are highly responsive to chemotherapy. Following up on these findings should help us better understand this tumor and may lead to a new appreciation of the X chromosome's role in other forms of cancer." Haber is the Laurel Schwartz Professor of Oncology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:

Further reports about: Haber Kidney MGH Pediatric WTX X chromosome

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>