Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trusting your instincts leads you to the right answer

09.01.2007
A UCL (University College London) study has found that you are more likely to perform well if you do not think too hard and instead trust your instincts. The research, published online today in the journal Current Biology, shows that, in some cases, instinctive snap decisions are more reliable than decisions taken using higher-level cognitive processes.

Participants, who were asked to pick the odd one out on a screen covered in over 650 identical symbols, including one rotated version of the same symbol, actually performed better when they were given no time at all to linger on the symbols and so were forced to rely entirely on their subconscious.

Dr Li Zhaoping, of the UCL Department of Psychology, said: “This finding seems counter-intuitive. You would expect people to make more accurate decisions when given the time to look properly. Instead they performed better when given almost no time to think. The conscious or top-level function of the brain, when active, vetoes our initial subconscious decision – even when it is correct – leaving us unaware or distrustful of our instincts and at an immediate disadvantage. Falling back on our inbuilt, involuntary subconscious processes for certain tasks is actually more effective than using our higher-level cognitive functions.”

The study shows an instance when our rational mind is more likely to perform worse than our subconscious – but the conscious mind still tends to veto the subconscious.

Ten participants were asked to locate the only back to front version of a repeated symbol on screen and were given between zero and 1.5 seconds from the moment their eyes had landed on the odd one out to scrutinize the image. Participants had to decide whether the odd one out was on the left or the right-hand side of the screen. The researchers found that participants scored better if they were given no scrutinizing time at all.

With only a tiny fraction of a second for scrutinizing the target, subjects performed with 95 per cent accuracy. With over a second to scrutinize the image, subjects were only 70 per cent accurate. With more than four seconds, accuracy was recovered.

In this test, the instinctive decisions were more likely to be correct because the subconscious brain recognises a rotated version of the same object as different from the original, whereas the conscious brain sees the two objects as identical. For the conscious brain, an apple is still an apple whether rotated or not. So while the lower-level cognitive process spots the rotated image as the odd one out, the higher-level function overrides that decision and dismisses the rotated object because it is the same as all the other symbols. When subjects were given the time to engage their higher-level functions, their decisions were therefore more likely to be wrong.

Dr Zhaoping said: “If our higher-level and lower-level cognitive processes are leading us to the same conclusions, there is no issue. Often though, our instincts and higher-level functions are in conflict and in this case our instincts are often silenced by our reasoning conscious mind. Participants would have improved their performance if they had been able to switch off their higher-level cognition by, for example, acting quickly.”

Tracking participants’ eye movements, the team controlled the time allotted to each individual’s search for their target. The visual display screen was switched off at various time intervals either before or after the subjects’ eyes landed on the target. When the on-screen image was hidden immediately after the subjects’ eyes had landed on the target, the subjects often believed they were just guessing where the odd one out was. They were unaware that their gazes had shifted to the target just before the image was hidden and their answers weren’t guesswork at all.

Dr Zhaoping said: “Our eye movements are often involuntary. What seems like a random darting of the eye is often an essential subconscious scanning technique that allows us to pick out unique and distinctive features in a crowd – such as colour or orientation. Soon after our eyes have fixed on a target, the conscious or top-down part of cognition engages and examines whether the candidate really is the target or not. If the target is not distinctive enough in the ‘eyes’ of the conscious, failure of identification can occur.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

Further reports about: cognitive conscious instincts rotated subconscious

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>