Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trusting your instincts leads you to the right answer

A UCL (University College London) study has found that you are more likely to perform well if you do not think too hard and instead trust your instincts. The research, published online today in the journal Current Biology, shows that, in some cases, instinctive snap decisions are more reliable than decisions taken using higher-level cognitive processes.

Participants, who were asked to pick the odd one out on a screen covered in over 650 identical symbols, including one rotated version of the same symbol, actually performed better when they were given no time at all to linger on the symbols and so were forced to rely entirely on their subconscious.

Dr Li Zhaoping, of the UCL Department of Psychology, said: “This finding seems counter-intuitive. You would expect people to make more accurate decisions when given the time to look properly. Instead they performed better when given almost no time to think. The conscious or top-level function of the brain, when active, vetoes our initial subconscious decision – even when it is correct – leaving us unaware or distrustful of our instincts and at an immediate disadvantage. Falling back on our inbuilt, involuntary subconscious processes for certain tasks is actually more effective than using our higher-level cognitive functions.”

The study shows an instance when our rational mind is more likely to perform worse than our subconscious – but the conscious mind still tends to veto the subconscious.

Ten participants were asked to locate the only back to front version of a repeated symbol on screen and were given between zero and 1.5 seconds from the moment their eyes had landed on the odd one out to scrutinize the image. Participants had to decide whether the odd one out was on the left or the right-hand side of the screen. The researchers found that participants scored better if they were given no scrutinizing time at all.

With only a tiny fraction of a second for scrutinizing the target, subjects performed with 95 per cent accuracy. With over a second to scrutinize the image, subjects were only 70 per cent accurate. With more than four seconds, accuracy was recovered.

In this test, the instinctive decisions were more likely to be correct because the subconscious brain recognises a rotated version of the same object as different from the original, whereas the conscious brain sees the two objects as identical. For the conscious brain, an apple is still an apple whether rotated or not. So while the lower-level cognitive process spots the rotated image as the odd one out, the higher-level function overrides that decision and dismisses the rotated object because it is the same as all the other symbols. When subjects were given the time to engage their higher-level functions, their decisions were therefore more likely to be wrong.

Dr Zhaoping said: “If our higher-level and lower-level cognitive processes are leading us to the same conclusions, there is no issue. Often though, our instincts and higher-level functions are in conflict and in this case our instincts are often silenced by our reasoning conscious mind. Participants would have improved their performance if they had been able to switch off their higher-level cognition by, for example, acting quickly.”

Tracking participants’ eye movements, the team controlled the time allotted to each individual’s search for their target. The visual display screen was switched off at various time intervals either before or after the subjects’ eyes landed on the target. When the on-screen image was hidden immediately after the subjects’ eyes had landed on the target, the subjects often believed they were just guessing where the odd one out was. They were unaware that their gazes had shifted to the target just before the image was hidden and their answers weren’t guesswork at all.

Dr Zhaoping said: “Our eye movements are often involuntary. What seems like a random darting of the eye is often an essential subconscious scanning technique that allows us to pick out unique and distinctive features in a crowd – such as colour or orientation. Soon after our eyes have fixed on a target, the conscious or top-down part of cognition engages and examines whether the candidate really is the target or not. If the target is not distinctive enough in the ‘eyes’ of the conscious, failure of identification can occur.”

Dominique Fourniol | alfa
Further information:

Further reports about: cognitive conscious instincts rotated subconscious

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>